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Abstract. The technique of Image Assisted Total 

Stations (IATS) has been studied for over ten years 

and is composed of two major parts: one is the 

calibration procedure which combines the 

relationship between the camera system and the 

theodolite system; the other is the automatic target 

detection on the image by various methods of 

photogrammetry or computer vision. Several 

calibration methods have been developed, mostly 

using prototypes with an add-on camera rigidly 

mounted on the total station. However, these 

prototypes are not commercially available. This 

paper proposes a calibration method based on Leica 

MS50 which has two built-in cameras each with a 

resolution of 2560×1920 px: an overview camera 

and a telescope (on-axis) camera. Our work in this 

paper is based on the on-axis camera which uses the 

30-times magnification of the telescope. The 

calibration consists of only 5 parameters to estimate. 

We use coded targets, which are common tools in 

photogrammetry for orientation, to detect different 

targets in IATS images. We test and verify the 

efficiency and stability of this method using 

multi-target monitoring.  

Keywords. Image Assisted Total Station, Coded 

Targets, Calibration, Multi-Target Monitoring 

1 Introduction 

Image Assisted Total Stations are a promising 

solution for replacing human vision in some 

traditional surveying applications. It combines all 

the advantages of total stations and cameras such as 

high automation, human error elimination, etc. 

Wagner (2016) describes several modern total 

stations which are equipped with at least one 

(overview) camera. Among them, the MS50, 

modern total station produced by Leica Geosystems, 

is one of those which is also equipped with a 

telescope camera and has a different field-of-view 

(FoV). The calibration method in this paper is 

developed for the built-in telescope camera which 

has a small FoV. The maximum resolution of the 

telescope camera is 2560×1920 px and the camera 

axis is parallel with the collimation axis. One of the 

principal problems using IATS is establishing the 

relationship between image points and the 

corresponding angular readings in the theodolite 

coordinate system. Most of the existing calibration 

methods are tested on different prototypes, e.g. 

Walser (2004), Knoblach (2009), Bürki et al. 

(2010).  

Bürki et al. (2010) provide an overview of 

traditional active Automated Target Recognition 

(ATR) technique and its limitations, while the 

adaptation of an appropriate CCD camera can help 

to solve some of these problems. Automatic target 

detection based on images improves the efficiency 

of IATS applications through ellipse detection, cross 

line detection, template matching, etc. For actual 

applications, coded targets (CTs) are probably the 

best method because by CTs, both the pixel 

coordinate value and the ID of the target on the 

image can be obtained at the same time. CTs are one 

of the basic tools in photogrammetry and are 

primarily used for initial exterior orientation 

determination (Hattori et al. 2002). There are two 

main types of CTs, concentric rings and dot 

distribution (Hattori et al. 2000). We choose the first 

one because it’s more robust in detection. Based on 

open-source libraries (Bradski 2000), CTs are 

applied to automatically detect the pixel coordinate 

of the target on the image.  

2 Mathematical Model of Calibration 

Huang and Harley (1989) originally proposed a 

camera calibration method without a real control 

array. It is suitable not only for the built-in telescope 

camera, but also for other cameras which are rigidly 

installed at the telescope. The accuracy of distance 
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measurement is relatively lower than that of the 

angular measurement for most of the total stations 

in close range. It demands more stringent require-

ments for the distance measurement if we want to 

yield higher accuracy of 3D coordinates. Thus, 

distance measurement is not involved in this method 

and we only concentrate on the 2D transformation 

relationship between angular measurement and 

image coordinate. 

The pixel coordinate system is a left handed (LH) 

coordinate system. The origin is the left top point on 

the image. We define the image coordinate system 

also as a LH coordinate system. We define the 

virtual principal point (x0, y0) as the origin O_img in 

the image coordinate system, and this point is 

always fixed. The relationship between the two 

coordinate sets is as shown in Fig. 1, and we have: 
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where xP, yP are pixel coordinates, xI, yI are image 

coordinates. 

Distortion occurs inevitably in lens systems, 

especially in wide FoV lenses (Devernay and 

Faugeras 2001, Tsai 1987). But in our case where 

the FoV is 1.7 gon diagonal, the distortion error is 

much smaller. Thus, we only consider one radial 

distortion parameter. The corrected image 

coordinate is: 
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where xI_c, yI_c are corrected image coordinates, 

r2=(xI2+yI2) and K1 is the radial distortion

parameter.  

Fig. 1 Relationship between pixel coordinate system and 

image coordinate system. 

Supposing there is a virtual plane which is 

perpendicular to the collimation axis, we also define 

the 3D telescope LH coordinate system in which the 

Z axis is opposite to the pointing direction and Y 

axis is the horizontal axis. The X and Y axis in this 

virtual plane coordinate system are parallel to the X 

and Y axis in the telescope coordinate system, so the 

X and Y coordinates on the virtual plane are the 

same with those in the telescope coordinate system.  

According to Leica Geosystems AG (2013), the 

telescope camera axis is parallel to the collimation 

axis in MS50. In fact, these two axes can’t be 

ideally parallel because of manufacture error. Thus, 

the image plane and the virtual plane will intersect 

at line A-B as shown in Fig. 2. It is obvious that 

there will be a geometric deformation if we 

vertically project a shape from the image plane to 

the virtual plane. Along S2 direction, the scale value 

is zero, but along S1 direction, the scale value is 

maximal. Actually the scale factor along S1 

direction can be decomposed to both axes in the 

image plane coordinate system, which are Sx and Sy 

respectively. This is the reason why we can still 

consider that the collimation axis and the camera 

axis are parallel, because the difference can be 

compensated by an affine transformation.  

Fig. 2 Virtual plane and image plane intersect at line AB 

The 3D relationship among these coordinate 

systems is shown in Fig. 3. 



 

Fig. 3 Relationships among telescope coordinate system, 

virtual plane system and image plane system 

The virtual constant should always be fixed 

because the shape on the virtual plane can change 

by a scalar factor with different virtual constants as 

shown in Fig. 4. We set c = 105 px as this results in a 

scale factor near 1.00, which means that an 

one-pixel deviation on the image plane will lead 

approximately to one pixel deviation on the virtual 

plane. That helps to assess the accuracy of the 

estimated angles more conveniently. 

 

Fig. 4 Different sizes and positions of target in different 

virtual planes because of different virtual constants 

The coordinates on the virtual plane are obtained 

from the image coordinates by 4 affine 

transformation parameters (Fig. 5). These 4 

parameters (a1, a2, b1, b2) are equivalent to those in 

Walser (2004) which may be expressed as Sx, Sy for 

the scale factor in both directions, s for shear factor 

and   for rotation angle.  

 

Fig. 5 Affine transformation between image coordinate 

system and virtual plane coordinate system 

The equation is quite simple and easy for 

differentiation: 

1 2

1 2

_ _ _

_ _ _

x tel a xI c a yI c

y tel b xI c b yI c

   

   
   (3) 

where x_tel and y_tel are telescope coordinates and 

have the same value in the virtual plane coordinate 

system. 

For each target point we always get a 3D 

coordinate value [x_tel y_tel -c] in the telescope 

coordinate system, and we can transform it into the 

corresponding theodolite coordinate system by two 

rotation angles – the horizontal angle and the 

vertical angle.  

For a leveled instrument, the theodolite Z axis 

should be pointing to the zenith direction and the X 

axis is pointing to initial zero direction. Since 

different instrument errors will always influence the 

angular measurement we need to compensate these 

instrument errors before using the angles to do the 

coordinate transformation. These errors are caused 

by the instrument itself and may be separated from 

the calibration parameters. We use the same 

mathematical model for calculating the theodolite 

axis errors in Walser (2004). The compensated 

horizontal and vertical angles are Hz_thC and 

V_thC. With the help of the crosshair in the 

telescope we can calculate the instrument errors 

before calibration. This is one of the major 

differences between Walser’s method and ours.  



 

Fig. 6 Relationship between the theodolite coordinate and the 

telescope coordinate system 

There are two steps involved in the 3D 

coordinate transformation from the telescope 

coordinate system to the theodolite coordinate 

system. The first step is to rotate π-V_thC around 

Y_tel clockwise. Then rotate Hz_thC around Z_tel 

counter clockwise. We have: 
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where Ry(V_thC-π), Rz(Hz) and R are 3×3 rotation 

matrices and [x_the y_the z_the]T are given in 

theodolite coordinate system. 

If we define the positive direction of the rotation 

matrices as counter clockwise, we have: 
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where   is the rotation angle. 

With the 3D theodolite coordinate obtained by 

Eq. (4), we can get the corresponding horizontal 

angle, vertical angle, and slope distance of the target. 

The slope distance is related with the virtual 

constant, but the angles are independent. 
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Every time we point to the target direction within 

the FoV of the telescope camera, we can get the 

pixel coordinates of the target and the estimated 

horizontal and vertical angles of the target using the 

method above. The parameters to be estimated are: 
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a a b b K Hz V 
 

X (7) 

where Ĥz  and V̂  are the estimated angles of the 

target in the theodolite coordinate system. The 4 

affine transformation parameters [â1 â2 â3 â4] and 

radial distortion parameter K̂1 determine the 

relationship between pixel coordinates and the 

corresponding angles of the target in theodolite 

system at a specific focus position, and the last two 

parameters [Ĥz V̂] are auxiliary parameters and not 

involved in real applications. 

 The position of the principle point is not 

included in the model because it is related to other 

parameters, which means that the design matrix is 

singular and the estimated principle point is not 

robust. The same effect is also described in 

Walser (2004). Thus, we fix the principal point at 

the center of the image, and the minor difference is 

absorbed by all the other parameters 

Each point pair can establish two observation 

equations, so we need at least 4 point pairs to 

calculate the parameters. A least-squares adjustment 

method is used to estimate the variables with a unit 

weight matrix and the following initial values: 
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We must be aware that the 5 parameters ahead 

will change when the focus position (i.e. the target 

distance) changes. As is mentioned in literatures, e.g. 

Bürki et al. (2010) or Wasmeier (2009), the 

calibration parameters are potentially subject to 

variations. Therefore, for each different focus 

position a separate set of calibration parameter has 

to be estimated. If enough parameter sets are 

determined (in our case there are 8 sets for the 

distance range between 2 m and 13 m), we can 

interpolate the correct values at each possible focus 

position.  

3 Automatic Detection of Coded 
Targets and Multi-Target Monitoring 

Coded Targets detection is an edge-based 

measurement method. As is described in Reiterer 

and Wagner (2012), the edge-based method is the 

most precise detection method compared with 

template-based and point-based method. In Bürki et 

al. (2010), detection based on image processing 

algorithms has special benefits compared with 

Automated Target Recognition (ATR) functions. A 

detailed comparison is given in that paper, so we 

will not discuss it here again. For CTs, we can also 

get the ID of each target which makes the detection 

a fully automation procedure. 

CTs have been used in photogrammetry for 

decades. In Ahn and Rauh (1998), different types of 

CTs were summarized and a circular CTs automatic 

detection was presented. The CTs we are using can 

be obtained by PhotoModeler or other photogram-

metry software. After some basic processing such as 

Gauss filtering and image binarisation with a given 

threshold, we use the Canny algorithm (Canny 1986) 

to get the edges in an image. With all the edges, we 

can fit the corresponding ellipse boxes. These 

fundamental functions are involved in OpenCV 

libraries which are open and can be compiled in 

different platforms (Bradski 2000). CTs detection of 

concentric rings relies on two crucial steps. One is 

to correctly find the inner ellipse for positioning; the 

other is to obtain the robust and unique code in the 

outer code region for identification. As the CTs 

detection is already a mature technique and the 

detection procedure is not the topic of this paper, we 

will not discuss it in details here.  

In monitoring applications using IATS and CTs, 

it is unnecessary to coincidently aim at the target 

with the cross hair. It is only necessary to keep the 

target point within the scope of FoV of the telescope 

camera. The FoV and the target point shown in 

Fig. 7 are transformed from the image plane to the 

virtual plane by the previously estimated calibrated 

parameters. That FoV is actually a limited window 

scope in which the CTs can be precisely detected by 

automatic image detection. For each CT to be 

automatically monitored, there are several config-

uration parameters to be predefined, as shown in 

Tab. 1. Example images of CTs can be seen in 

Tab. 3. 

Table 1. Configuration parameter for each monitored CTs 

Symbol Explanation 

C Code of the target 

Hz Horizontal angle of the collimation direction 

V Vertical angle of the collimation direction 

F Focus position 

G Gray threshold for image binarisation 

 

Fig.7 Field of view in the theodolite system 

Every CT has a different unique code which 

represents an ID of the respective target. Different 

targets may have different positions and different 

distances to the total station, which means different 

focus positions to keep the shape of the CT on the 

image clear enough to be detected. Besides, the 

different CTs may be visible under different light 

conditions, so we have different input parameters to 

detect image coordinate of the target shape on the 

image. Here we use a threshold parameter for 

binarisation as the input parameter for image 

processing.  

4 Accuracy Assessment 

According to least-squares method, we have: 
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where res is the residual vector of observations, A is 

linearized design matrix, ˆ x  are corrections of 

variables using unit weight matrix. It’s an iterative 

procedure with an initial value given by Eq. (8). The 

posterior variance of unit weight is: 
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where r is the degree of freedom. There are 7 

variables to estimate in this method. If there are n  

pairs of observations, we obtain r=2×n-7. The value 

of σ̂0 reflects the quality of original observations 

and how smoothly the original measurement fits the 

mathematical model. 

From Eq. (1-6), we can see that there are two 

kinds of observations: one is the set of angular 

measurements obtained by the total station; the 

other is the set of detected pixel coordinates 

obtained by the telescope camera. The final result 

will be influenced by both measurements: the 

angular readings of the total station and the pixel 

coordinate detection of the CT on the image. 

In our method, we use the virtual constant in the 

telescope system instead of the camera’s principal 

distance in the camera system. One reason is that 

the principal distance changes when a different 

focus position is set, another is that we can directly 

obtain the angles in the theodolite system by this 

virtual constant and the image coordinates on the 

virtual plane. We set the virtual constant value as c 

= 105 px so that we can get a nearly identical size of 

the transformed image on the virtual plane 

compared to that on the image plane. Supposing the 

angular readings are ideally fixed, 1/10 px deviation 

on virtual plane corresponds to 0.06 mgon in angles 

because of the distance of the virtual constant. 

Due to the systematic effect or hysteresis effect, 

the angular readings will be a little different if we 

aim at the same target from different telescope 

positions. Wasmeier (2009) solves this problem by 

aiming at the target randomly, whereby this 

systematic error is averaged and applied to all the 

calibration parameters. To avoid this error, which 

will influence the accuracy of calibration result, we 

always need to preserve the same procedure when 

rotating the telescope to target direction. Fig. 8 

shows how we rotate from left-top corner to the 

target P each time we do the measurement in 

calibration.  

 

Fig. 8 The rotation direction of telescope to target P 

5 Calibration Experiment 

5.1 Preparations 

The warming-up procedure is the first crucial 

preparation. The internal temperature can influence 

the output of angles and image point. 

 

(a) Deviation of angles in warming-up procedure 

 

(b) Deviation of target pixel point in warming-up procedure 

Fig. 9 Angle, pixel deviation and inner temperature in 

warming-up procedure: (a) Deviation of angles in warming- 

up procedure; (b) Deviation of target pixel point in warming- 

up procedure 



We can see from Fig. 9(a) that horizontal angle 

can deviate by up to 1.2 mgon while the vertical 

angle stays stable. Fig. 9(b) shows that the 

warming-up procedure can influence the CTs 

detection by 4.2 px in the image, so this is only 

practical for long time monitoring. About 3 hours 

later the coordinate detection of CTs on the image 

stays stable. This long period is also verified by 

Wasmeier (2009) and Reiterer & Wagner (2012). 

This fact must be considered by absolute 

measurements over longer periods. For short term 

relative applications it may be neglected. 

Theodolite axis errors should also be considered 

before calibration. As is mentioned in Walser (2004), 

theodolite axis errors always occur when some axis 

conditions are not met. These errors include the 

vertical-index error, the collimation error, and the 

tilting-axis error, which can be determined and 

eliminated. 

5.2 Image Capturing and Corresponding 

Measurement 

 

Fig. 10 Experiment at focus position 803 

After the preparations mentioned above, we can 

start to obtain the calibration data. Here we use CTs 

as an example to detection the image position of a 

certain point. Other method such as cross line 

detection or simply the ellipse detection can also 

achieve the same goal. As described in Huang and 

Harley (1989) for the case of a single target, every 

time we rotate to a position close to the target, we 

can obtain a pair of angular readings and pixel 

coordinates of a detected CT. We have some 

amounts of observations that the fixed CT is 

distributed as a grid in the image. Fig. 10 shows one 

of the calibration positions with many CTs on the 

plate, and we only choose one of the CTs as our 

study target. As we use the coded targets only for 

calibration in a fixed set-up, an orthogonal view 

onto the target is guaranteed. In practical use case 

with a possible eccentricity error has to be 

considered, c.f. Luhmann (2014). 

We have 16 pairs of aiming directions near our 

study target to estimate the calibration parameters 

for each focus position of the CT. Different focus 

position (and therefore different distances) of the 

CT means different parameters between the 

theodolite system and the image system. We 

obtained a total of 8 different focus positions. The 

relationship between focus position and distance to 

the CT is shown in Fig. 11. 

 

Fig. 11 Relationship between focus position and distance to 

the CT 

5.3 Results and Analysis 

According to the mathematical model and 

Eq. (10), we can estimate all calibration parameters 

and the accuracy of the result by using the 

least-squares method at different focus positions. 

The results – as shown in Tab. 2 – are 

estimated based on equal weights. With these values, 

we can interpolate a new set of parameters for any 

focus position/target distance. As is described in 

Knoblach (2009), we can also establish polynomial 

functions between the focus position and these 

calibration parameters. More focus positions mean 

more precise sampling of the parameters for 

modeling. One thing needed to keep in mind is that 

the virtual constant shown in Fig. 3 should always 

be fixed both in the calibration and the application 

case. Different virtual constants will yield to 

different groups of calibration parameters by a scale 

factor. Similar with Bürki et al. (2010), a1 and b2 

represent a change in the scales of the image. The 

graphical relationship between parameter a1 and 

focus position is shown in Fig. 12. 



Table 2. Calculated results of 8 calibration parameter sets (focus positions) 

Focus 

Position 

3-D 

Distance 

(m) 

a1 a2 b1 b2 
K1 

(×10
-5

) 

σ0̂ 

(mgon) 

803 2.024 0.960227 0.002549 -0.002687 0.960233 -0.1178 0.07 

637 2.529 0.955317 0.002681 -0.002352 0.955360 -0.1133 0.06 

548 2.942 0.953194 0.002656 -0.002442 0.953409 -0.0973 0.06 

460 3.540 0.951768 0.002693 -0.002554 0.952121 -0.1000 0.04 

365 4.577 0.950740 0.002609 -0.002516 0.951165 -0.1059 0.06 

295 5.902 0.950507 0.002698 -0.002715 0.951000 -0.1119 0.05 

228 8.302 0.950601 0.002675 -0.002524 0.950941 -0.1169 0.08 

167 13.205 0.950772 0.002659 -0.002573 0.950949 -0.1072 0.07 

 

Fig. 12 Variation of the parameter a1 in function of the focus 

position. 

At each focus position, we have 16 image points 

distributed across the image. When the total station 

and the target are stably fixed, each pair of angular 

readings (horizontal and vertical angles) 

corresponds to a pair of image point position. 

Fig. 13 shows the angular residuals of the estimated 

angles in 16 directions to the same target using 

different calibration methods at the interpolated 

focus position of 508.  

 

(a) Gnomonic projection 

 

(b) Walser’s method 

 

(c) Method in this paper 

Fig. 13 Residuals of different calibration approaches using 

the same data at focus position 508: (a) Gnomonic projection; 

(b) Walser’s method; (c) Method in this paper 

Fig. 13(a) and Fig. 13(b) refers to the same 

calibration methods and parameters as described in 

Wagner and Wasmeier (2014), Fig. 13(c) shows the 

residuals calculated by this method. We use the 

same calibration data and obviously this method is 

the best solution for close range applications in our 

case. 



Gnomonic projection doesn’t consider the 

rotation parameters and is only used for minor 

accuracy applications. As is described in Section 4, 

the rotation direction of telescope is important 

because different rotation direction to the same 

target will have different angular readings, which is 

also demonstrated in Fig. 14. Though the difference 

is quite small, it influences the calibration results. 

Walser’s method doesn’t take this point into 

consideration so the result can be influenced by 

random rotation direction of the telescope. 

If we only use 4 affine parameters to calibrate, i.e. 

without the distortion parameter, and also aim at 

target from varying directions, we will get another 

set of 16 angular residuals which are not so good as 

in the method described in this paper. The 

differences are illustated in Fig. 14. 

 

(a) Rotated in different directions and calibrated without 

distortion parameter 

 

(b) Rotated in different directions and calibrated with 

distortion parameter 

 

(c) Rotated in the same directions and calibrated with 

distortion parameter 

Fig. 14 Residuals of different parameters and aiming 

directions: (a) Rotated in different directions and calibrated 

without distortion parameter; (b) Rotated in different 

directions and calibrated with distortion parameter; (c) 

Rotated in the same direction and calibrated with distortion 

parameter 

Different rotation direction of the telescope will 

influence the angular readings of the total station 

(see the last paragraph in Section 4). The difference 

is quite small, but this factor exhibits a large 

influence on the calibration and cannot be ignored. 

The residuals shown in Fig. 14(a) are results of a 

calibration without distortion parameters and target 

aims in different directions. We rotate the telescope 

horizontal clockwise for the first two rows and 

horizontal anticlockwise for the last two rows. In 

Fig. 14(b), we also aim the target in opposite 

directions but calibrate with distortion parameters. 

In Fig. 14(c), we aim to the target always from the 

same direction and distortion parameter is involved 

in calibration. There are 5 parameters for 

transformation, and the maximum angular residual 

is only about 0.1 mgon. 

6 Multi-Target Monitoring Experiment 

Once the relationship between angular readings 

and pixel coordinates is determined at different 

focus positions, we can interpolate a group of 

calibration parameters for each new target distance. 

Further, this method provides a chance of replacing 

conventional ATR functions and can be used in 

various applications (e.g. automatic monitoring). 

Besides collimation angles (including horizontal 

and vertical angles) near the target prism in 



conventional automatic monitoring, the method in 

this paper involves more configuration parameters, 

as described before.  

In this experiment, we choose 3 CTs indoors, 

which are attached on stable walls and foundations. 

The specific configuration parameters for 

monitoring are shown in Tab. 3. 

Table 3. Different configuration parameters for multi-target 

monitoring 

Image C Hz(gon) V(gon) F G 

 

1683 186.76 98.88 211 178 

 

6143 299.24 102.79 214 175 

 

1443 391.07 92.91 228 152 

 The gray threshold for image binarisation G can 

be self-adjusted to a new value in the vicinity of 

input until the corresponding CTs can be 

successfully detected. For example, if the detection 

fails with the initial value G=137, the program can 

choose a new value like G=142 for detection. If still 

fails with G=142, it can choose G=132 for another 

detection. In the end when the detection succeeds, 

we can obtain a new G value for the threshold. So 

this value is dynamically changed along with the 

light conditions.  

The angle values Hz and V value indicate that 

these 3 CTs are located in different directions and 

focus position F indicates different distances from 

the targets to the total station.  

In the monitoring procedure, every time we get a 

group of angular readings and pixel coordinate of 

the target on the image, we can calculate the 

corresponding angles in the theodolite system of the 

target based on Eq. (1-6) and the calibration 

parameters interpolated by focus position. The 

measured data of 3 CTs are shown in Fig. 15. 

 

  

(a) Target 1 

 



 

 

(b) Target 2 

 

 

(c) Target 3 

Fig. 15 Original monitoring data and the estimated angles: (a)Monitored data from target 1; (b)Monitored data from target 2; 

(c)Monitored data from target 3; 



The warming-up effect can also be seen in 

Fig. 15. One major difference is that the angular 

readings and detected pixel coordinates of the CTs 

look random and do not follow the same trend as in 

Fig. 9. It is because MS50 automatically rotates to a 

specific direction in each epoch, thus the accuracy 

of rotation itself should be taken into consideration. 

From Fig. 15, the original angular readings can 

deviate from approximately -0.8 to 0.8 mgon, even 

though we order the total station to position to 

exactly the same direction every time. But at the 

same time, the detected pixel coordinate of the 

target is analogously changed, which helps to yield 

a more accurate final result.  

We choose and analyze the data after 3 hours of 

warming-up procedure and the result is shown in 

Tab. 4. 

Table 4. Statistic results of the estimated angles after 

warming-up procedure (Unit: mgon) 

Target ID Angle Type 
Max 

Deviation 
STD 

Target 1 
Horizontal 0.16 0.06 

Vertical 0.34 0.10 

Target 2 
Horizontal 0.10 0.03 

Vertical 0.29 0.10 

Target 3 
Horizontal 0.30 0.09 

Vertical 0.28 0.11 

The last column STD in Tab. 4 stands for 

standard deviation. According to the description in 

the user specification of Leica MS50, the angular 

accuracy of GPR1 prism with ATR function is 

±0.3 mgon. With this method we can get a 

comparable monitoring result to the conventional 

ways with cheaper cost. 

7 Conclusion and Expectation 

IATS is a promising development direction for 

total station. Many other image processing 

algorithms can be used and provide us a larger 

range of possible applications according to specific 

purpose. The presented method can replace the 

conventional monitoring method using the ATR 

function and prisms in some fields, especially 

because of its convenience and low-cost. The result 

can also be improved predictably by improving 

accuracy of the angular readings from total station 

and the target detection by image processing. 
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