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Abstract. Condition monitoring of highways is
an important prerequisite for timely transporta-
tion of wares. Only through early detection and
rehabilitation of damaged spots of the pavement
it is possible to avoid wide-ranging limitations of
traffic and accompanying costly delays.

This paper presents a cost-effective realization
of a vehicle-mounted multi-sensor-system for di-
rect geo-referencing through fusion of sensor data
from both an inertial measurement unit (IMU)
and multiple receivers for the Global Navigation
Satellite Systems (GNSS), based on an Unscented
Kalman Filter (UKF).

To reduce the costs of such a system a low-
cost IMU based on micro-mechanical systems
(MEMS) was used. A new approach is the inte-
gration of a GNSS array consisting of four sym-
metrically placed antennas to determine the ori-
entation. This leads to an increased position
accuracy for the multi-sensor-system as well as
an increased orientation accuracy, because all ori-
entation angles of the platform can be introduced
as additional measurements in the estimation pro-
cess. Furthermore, the sensor fusion is carried
out with an UKF, so that in contrast to the clas-
sic approach with an Extended Kalman Filter
(EKF) the momentums of the non-linear system
equations are included up to the third order.

At first the realized system is evaluated through
processing in an EKF and an UKF architecture
based on simulated measurements. Afterwards a
real experiment confirms the advantage of orien-
tation aided sensor fusion through a GNSS array
as well as the improved logging of complex tra-
jectories through the UKF.

Keywords. Monitoring, multi-sensor-system,
Unscented Kalman Filter, road damages

1 Introduction
In the context of globalization and increasing
intra-European traffic additional burdens for the
German road network become obvious. As a re-
sult, adequate monitoring of the road network,
consisting of a timely localisation of damages as
well as documentation of the successful rehabili-
tation measures, is needed.

To guarantee an appropriate quality manage-
ment the Federal Highway Research Institute
(BASt) carries out an annual inspection of the ca.
53.000 km of Federal Highways and examines the
respective road substance. To accomplish this
in the given timeframe and budget appropriate
measurements methods have to be chosen.

The current used technique originates from the
field of Mobile Mapping. By equipping a mea-
suring vehicle with special scanners that register
the ground lengthwise and crossways to the di-
rection of motion and can be up to 4 meters long,
the kinematic detection of the street is accom-
plished. Additionally, the data is linked to the
corresponding locality by geo-referencing through
vehicle-mounted position sensors, determining the
scanners position and orientation at the time of
measuring (see (Paffenholz 2012)).

Due to the dimensions of the mounted sensors
and the subsequent restricted maximum speed,
a survey cannot be performed without interfer-
ing with the traffic flow. To solve this issue the
Fraunhofer Institute of Physical Measurement
Techniques (IPM) developed the Profile Pave-
ment Scanner (PPS) (fig. 1), the first scanner to
be certified by BASt for use in public spaces for
this purpose.

In combination with a suitable measurement
vehicle a sensor platform is created that allows
for speeds of up to 100 km/h. Due to the fusion
of high movement speed and the flexible deploy-
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Fig. 1 Fraunhofer Profile Pavement Scanner (PPS)
for pavement inspection

ment the documentation of the road conditions
is achieved without hindering the traffic flow.

The sole positioning of the scanner could in
principle be achieved by using GNSS only. But
in the actual target environment signal loss due
to signal shading cannot be ruled out. To deal
with this and to determine the needed exterior
orientation of the sensor an IMU is used as ad-
ditional sensor system. Since the IMU acts as
autonomous system and provides data in a high
frequency independently from the GNSS receiver,
it is an optimal supplement. To achieve an op-
timal position and orientation for the scanner,
the measurements of both the IMU and GNSS
sensors are combined.

This paper focuses on a fundamental case study
of direct geo-referencing in post-processing as
preliminary stage for the long-term objective of
developing an adequate geo-referencing of highest
accuracy for use with the PPS.

Consequently, different algorithms for the sen-
sor fusion were tested with both simulated data
and a practical experiment and evaluated for their
suitability. Goal was to fully utilize the existing
low-cost hardware and to ensure an optimal re-
sult in the sensor fusion. Therefore the state
estimation is aided by a GNSS array (fig. 2), that
not only allows positioning and the calculation of
speed but also for the first time gives information
about the orientation.

Based on the existing hardware and the inten-
tion to prevent avoidable surveys the goal was
to achieve a lane precise positioning, which re-
quires an accuracy of below 1.75m. This is due
to generate adequate approximation coordinates,
which would be sufficient for the referencing of

Fig. 2 Used GNSS-Array to determine absolute
angles as observations for the sensorfusion

for example an image giving sensor system.
The paper is structured as follows: After clas-

sifying this contribution in the research context
of kinematic multisensory systems section 3 ex-
plains the used approaches with regards to inertial
navigation and Kalman-Filters. Following this,
section 4 illustrates the application and the re-
sults are compared. Finally, section 5 discusses
the results.

2 Related Work
The challenge of direct geo-referencing has been
approached in the early 90s (e.g. (Cannon 1991)).
The focus has been the direct geo-referencing of
airborne surveys (see (Skaloud 1999), (Schwarz
2001)). Therefore Cramer (2001) analysed the at-
tainable accuracy. Basis were always high quality
sensors and the EKF as fusion algorithm.

One trend in regards to algorithms was started
by Julier and Uhlmann (2002) with the UKF. A
comparison between UKF and EKF can be found
in (Wendel et al. 2005) and (El-Sheimy, Shin, and
Niu 2006). Subsequently, the emphasis changed
to the realization of systems with low-cost sensors
(e.g. (van der Merwe and Wan 2004) and (Shin
2005)).

Another trend in present science is the im-
provement of sensor fusion with more than one
GNSS antenna (e.g. pioneering work by (Böder
2002), further approaches by (Wieser and As-
chauer 2011), (Paffenholz 2012) and (Eling, Kling-
beil, and Kuhlmann 2015)).

This paper focuses on the cost-effective real-
ization of a multi-sensor system for direct geo-
referencing based on the combination of a low-cost
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MEMS-IMU and a GNSS array with four anten-
nas. This not only allows an update of the IMU
based estimations of position and velocity but
also of the orientation.

Both sensors are fused in an EKF and an UKF.
Based on El-Sheimy, Shin, and Niu (2006) the
UKF was additionally chosen because of its ability
to handle large attitude errors in an appropriate
way. In this respect this paper is an extension of
their contribution by concerning the assistance
of the orientation estimation by using an GNSS
antenna array.

In contrast to Skaloud (1999), Schwarz (2001)
and Böder (2002) the sensor platform is a land-
based vehicle. And unlike van der Merwe and
Wan (2004) a GNSS array instead of a single
antenna is used. Furthermore, the results from
the UKF are compared to those of the EKF. The
difference to Wendel et al. (2005) lies in the use
of a loosely coupled architecture for the sensor
fusion.

3 Methods
In this section the basic principles of inertial nav-
igation, as well as EKF and UKF are explained.

3.1 Inertial Navigation
To describe the movement of a sensor platform
with IMU measurements the formulation in the
local, topocentric navigational coordinate system
is chosen (see also (Wendel et al. 2005)). This
results in navigation equations that are shown in
the equations (1)-(8). To indicate the position in
a higher coordinate system the WGS-84 ellipsoid
in combination with latitude, longitude and eleva-
tion ϕ, λ and h are used. Rn and Re describe the
corresponding ellipsoidal half-axes and vn

eb,d the
sensor platforms speed along the local vertical
direction.

ϕ̇ = 1
Rn(ϕ)− h (1)

λ̇ = 1
(Re(ϕ)− h) cos(ϕ) (2)

ḣ = vn
eb,d (3)

The differential equation for the speed follows
as

v̇n
eb = Rn

b ab
ib − (2 ωie + ωen)× vn

eb + gn
l (4)

Here Rn
b is the rotation matrix from the body

fixed in the navigational coordinate system and
ab

ib is the measured acceleration. Furthermore
ωn

ie describes earth’s rotation rate, ωn
en is the

transportation rate and gn
l is the local gravity

vector.

gn
l =

(
0, 0, g(ϕ, h)

)T (5)

The gravity vector is not assumed as a con-
stant and instead depends on the longitude λ and
the ellipsoidal height h. The calculation follows
the normal gravity formula after Somigliana (see
(Torge 2002)).

The last navigation equation is the equation
of orientation.

Ψ̇n = Rn
b ωb

ib − ωn
ie − ωn

en (6)

The equations 4 and 6 need the earth rotation
and the transportation rate. Those can be for-
mulated in the navigational coordinate system
as

ωn
ie =

[
ωe cos(ϕ) 0 −ωe sin(ϕ)

]T (7)

and as

ωn
en =

[
vn

eb,east

Re(ϕ)−h − vn
eb,north

Rn(ϕ)−h −vn
eb,east tan(ϕ)

Re(ϕ)−h

]T

(8)

3.2 Kalman-Filters
This by Rudolf Emil Kalman described algorithm
is used for optimal estimations of the state in
a linear or linearised system based on measure-
ment data (see (Kalman 1960)). A distinction
is made between the prediction, based on the
system equation (9), and the filtering, based on
the measurement equation (10).

x̃ = Tx̃ + Bũ + Sw (9)
l̃ = Ax̃ (10)

The matrix T describes the transition matrix,
x the state vector, B the outer input matrix, u
the outer input vector, S the noise matrix, w the
noise vector, l the measurement vector and A the
design matrix. The system and the measurements
are subject to noise that within the algorithm is
referred to as Gaussian White Noise (GWN).

In the prediction step the state x is extrapo-
lated based on the corresponding variance prop-
agation Qx̂x̂. In the filtering step a control and
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correction takes place by determining the covari-
ance matrix of the innovation D and the Gain
matrix K. Based on these the weighted mean of
the innovation between the measurement l and
the predicted state x̄ can be computed. In an-
other step the corresponding variance-covariance-
matrix (VCM) Qx̂x̂ can be calculated.

3.2.1 Extended Kalman-Filter

Since the Kalman-Filter loses the characteristic of
a Best Linear Unbiased Estimator (BLUE) when
used with nonlinear problems a linearisation of
the nonlinear transfer function f is needed (see
(Eichhorn 2005) and (Paffenholz 2012)).

Tk+1,k = ∂fk+1,k(xk,uk,wk)
∂xk

∣∣∣
xk=x̂k

(11)

Bk+1,k = ∂fk+1,k(xk,uk,wk)
∂uk

∣∣∣
uk=uk

(12)

Sk+1,k = ∂fk+1,k(xk,uk,wk)
∂wk

∣∣∣
wk=wk

(13)

Ak+1,k = ∂hk+1,k(xk+1,vk+1)
∂xk+1

∣∣∣
xk+1=x̄k+1

(14)

3.2.2 Unscented Kalman-Filter

An alternative approach to use a Kalman-Filter
with a nonlinear problem was publicized by Julier,
Uhlmann, and Durrant-Whyte (1995). The UKF
is a special case of the Monte Carlo Simulation
that allows updating the mean value and the
VCM of a state based on deterministically chosen
sigma points. The used number of sigma points is
variable and can be chosen based on the applica-
tion (see (Julier and Uhlmann 2002) and (Julier
2003)).

The advantage of this approach is that the
nonlinear functions from the prediction as well as
the measurement equations can be used directly
and therefore making linearisation unnecessary.
Additionally, it has to be noticed that moments up
to third order are included in the UKF approach.

This paper uses the scaled unscented trans-
formation (see (Julier 2002)), since it allows for
adaption of scattering range and weightings. For
the distribution of the sigma points both (Julier
2002) and (van der Merwe and Wan 2004) recom-
mend the parameters α = 10−3, β = 2 and κ = 0
based on the assumption of normally distributed
errors. The number of points should be 2n + 1
with n = rg(x). Initially the scaling parameter
λUKF has to be calculated

λUKF = α2(n+ κ)− n (15)

With it the sigma points of the prediction fol-
low as

X 0 = x̂ (16)

X i = x̂ +
(√

(n+ λUKF) Qx̂x̂

)
i

(17)

i = 1, . . . , n

X i = x̂−
(√

(n+ λUKF) Qx̂x̂

)
i

(18)

i = n+ 1, . . . , 2n

Furthermore, the corresponding equations are
distinguished by the weights of the mean value
Wm and those of the VCM Wc.

Wm
0 = λUKF

(n+ λUKF) + (1− α2 + β) (19)

Wc
0 = λUKF

(n+ λUKF) (20)

Wm
i = Wc

i = λUKF

2(n+ λUKF) (21)

Following this the sigma points of the predic-
tion step are transferred with the nonlinear sys-
tem equation f().

yP = f(X P ) (22)

Based on that the predicted state is calculated
from the weighted mean .

x̄ =
2n∑

i=1
Wc

i yPi
(23)

The corresponding VCM results from the vari-
ance of the transferred sigma points. Due to the
assumption of GWN the noise term Q is added.

Qx̄x̄ =
(

1
2n

2n∑
i=1

Wc
i (yPi

− x̄)(yPi
− x̄)T

)
+Qk

(24)
For the filtering step the calculations are ana-

logical to those of the prediction step. The sigma
points are transferred based on the nonlinear mea-
surement h().

yF = h(X F ) (25)

In the same way the weighted mean value and
the VCM Qyy of the transferred sigma points are
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calculated. The cross-correlation matrix Qxy is
determined here, too.

ȳF =
2n∑

i=1
Wm

i yF (26)

Qyy = 1
2n

2n∑
i=1

Wc
i (yFi

− ȳF )(yFi
− ȳF )T

(27)

Qxy = 1
2n

2n∑
i=1

Wc
i (xFi − x̄F )(yFi

− ȳF )T

(28)

Parallel to the prediction the filtering takes
the measurement noise Qll as additive term into
account.

D = Qyy + Qll (29)

In contrast to the EKF the Gain matrix K is
calculated by multiplying the covariance matrix
with the inverse cofactor matrix of the innovation.

K = Qxy D−1 (30)

The final calculation of the filtered state and
the filtered VCM are analogical to those of the
EKF.

x̂ = x̄ + K (l−A ȳF ) (31)
Qx̂x̂ = Qx̄x̄ −KDKT (32)

4 Application
To minimize the cost for the system a MEMS-
IMU of the type SBG System IG-500E, with the
specifications as show in table 1 and a sample
rate of 20Hz, was used.

Table 1 Specification of the IMU SBG IG-500E

Accelerometers Gyrocopes
dynamic range ± 5 g ± 300 ◦/s
inital bias ± 5mg ± 0.5 ◦/s
noise density 0.25mg/

√
Hz 0.05◦/s/

√
Hz

The results of the factory-calibration were stored
inside and automatically used to correct the raw
measurements. Nevertheless since IMUs based
on MEMS designs show significant offsets during
use even after calibration, the state vector was
augmented with the biases of the accelerometer

and gyroscopes (e.g. (Wendel 2007) and (van der
Merwe and Wan 2004)).

As aiding absolute sensor a GNSS array con-
sisting of four PG-S1 antennas and two MR-1
receivers on a quadratic platform was used. This
not only allows to aid the position and velocity
estimation but the orientation estimation, which
otherwise can not be controlled directly. The two
antennas connected to the same receiver were dia-
metrically positioned, so that there was a length-
wise and a crossways pair. Furthermore, for the
processing of the position, velocity and angular
output each pair was divided into a primary and
a secondary antenna. The output of the receiver
contains the position and velocity of the primary
and the internally calculated angle between both
antennas, which could directly be used as ob-
served quantities.

Additionally, the precision of the systems was
examined to obtain a reliable stochastic model
for the sensor fusion. To minimize the costs the
use of SAPOS-correctional data was omitted and
instead only single point code solutions were used.
Consequently, the position precision was deter-
mined to spos = 2.325m. For the orientation mea-
surements the output of the receivers was com-
pared with laser tracker measurements. The orien-
tation precision was determined to sΨ = 1.2016◦.
The output rate of this absolute sensor system
was 10Hz.

4.1 Prediction
To fuse the measurements of these complimentary
systems an EKF as well as an UKF, both in a
loosely coupled architecture, are used.

The EKF had the design of an error state fil-
ter as described in Wendel (2007) and therefore
estimates the errors produced through state esti-
mation based on pure IMU measurements.

∆x =
[
∆p ∆v ∆Ψ ∆ba ∆bω

]
(33)

In contrast to that the UKF had the design of a
total state filter based on the nonlinear navigation
equations and estimates the wanted quantities
directly.

x =
[
p v Ψ ba bω

]
(34)

While the estimation of the position and veloc-
ity in the UKF do not need special consideration,
there is a challenge in the selection of orientation
parameters and the modelling of the IMU error
characteristics with respect to the intended task.
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A proper description of the platform’s orienta-
tion is given with quaternions. These have the
advantage that a singularity free description of
orientations is guaranteed.

Following van der Merwe and Wan (2004) for
the total state UKF the nonlinear propagation
equation of the quaternions is used as

qk+1 =
[
I cos(s)− 1

2 Ω(ω) ∆t sin(s)
s

]
qk (35)

with

s = 1
2

√
(ωx ∆t)2 + (ωy ∆t)2 + (ωz ∆t)2 (36)

and

Ω(ω) = 1
2


0 ωx ωy ωz

−ωx 0 −ωz ωy

−ωy ωz 0 −ωx

−ωz −ωy ωx 0

 (37)

Finally a model for the IMU errors has to
be chosen. In this paper it is modelled as ran-
dom walk. Consequently the measurements are a
superposition of the true measurements (̃.)

b

ib, the
offsets b(.) and the GWN w(.).

ab
ib = ãb

ib + ba + wa (38)
ωb

ib = ω̃b
ib + bω + wω (39)

4.2 Filtering
To be precise, the lever-arm lb between the GNSS
and the IMU must be taken into account by cor-
recting the measurements of position and velocity
of each main antenna according to equations (40)
and (41). The corresponding lever-arms between
the main antennas and the case of the IMU were
determined with a laser tracker to be each 0.840m
± 0.002m before the experiment took place.

pIMUi
= pGNSSi

−Rn
b lb

i (40)
vIMUi

= vGNSSi
−Rn

b (ωb
ib × lb

i ) (41)

After relating the GNSS measurements to the
IMU the respective observation equations can be
generated. In case of the error state EKF, where
only differences between the prediction and the
measurements are processed, the corresponding
observation equation results from the difference
of the predicted states reduced by the averaged
measurements as follows.

lEKF =

p̄IMU − 1
2 (pGNSS1 + pGNSS2)

v̄IMU − 1
2 (vGNSS1 + vGNSS2)
Ψ̄IMU −Ψ

 (42)

In case of the UKF the measurements are di-
rectly used in the observation vector l.

lUKF =

 1
2 (pGNSS1 + pGNSS2)
1
2 (vGNSS1 + vGNSS2)

Ψ

 (43)

At first simulations based on artificial data of
a 7.6 km trajectory with variations in all orien-
tational dimensions were carried out. Therefore
the error-free accelerations and gyroscopic mea-
surements in the named respective output rates
were created and superpositioned with offsets as
stated in tab. 1 and GWN as follows

σΨ = 1.5 ◦ (44)
σv = 2.5m/s (45)
σp = 2.5m (46)

To judge the results they were transformed to
a local topocentric coordinate system with the car
as origin as in Eichhorn (2005) with the length-
wise component lk, the crossways component qk
and the height component h (see fig. 3).

(Ỹ , X̃)k

(Ỹ , X̃)k+1

(Ỹ , X̃)k+2

lkk+1
qkk+1

dk+1

yk+1

xk+1

(Ŷ , X̂)k+1

Fig. 3 Local coordinate system as proposed by
Eichhorn (2005)

The simulation showed, that the approach us-
ing the EKF resulted in a mean position deviation
of dp = 0.796m ± 0.876m, while the approach
with the UKF yielded a mean position devia-
tion dp = 0.699m ± 0.536m in post-processing.
Accordingly, a significant advantage of one algo-
rithm over the other could not be detected. After
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the successful simulations a practical experiment
was carried out.

The focus of this experiment was to test the
system in a “high-kinematic” scenario to ensure
that both the sensors and the algorithms work
under extreme circumstances. Regarding the
simulations the difference were the tighter turns
with a partial curb turning raidus of only 10m.
The gathered data was again analysed in a post-
processing step.

The reference trajectory was generated from
data gathered by another multi-sensory system
consisting of a navigational class iMAR iNav
RQH-1003 IMU in combination with a dual band
GNSS receiver with carrier-phase based correc-
tional data. It was processed with the commercial
software solution KingsPad and can be seen in fig.
4. As measurement equipment of superior cate-
gory this solution has an deviation of ca. 0.002m.

0 200 4000

100

200

300

λ [m]

ϕ
[m

]

Fig. 4 Reference trajectory created with a navi-
gational grade IMU, differential GNSS and
processed with KingsPad

Due to the highly kinematic trajectory with
very tight turns the EKF diverges soon after the
start of the movement depending on the attitude
error at initialization. But because of the high
update rate of the GNSS even initialization errors
of over 30◦ can still be compensated, but degrade
the navigation solution significantly. Therefore a
“pre-zero“-epoch with adjacent averaging of the
measurements is required.

In contrast to that the UKF processes the data
successfully and is able to compensate even large
initialization errors in a minimum of time.

For an appropriate comparison and analysis
of the proposed approach for each algorithm two
different cases were processed: On the one hand
without aiding through absolute orientation mea-
surements and on the other hand with aiding. As
appropriate operating figures the mean position

deviation with corresponding root mean square
(exemplary in equations 47 and 48) were chosen.

∆̄lk = 1
n

n∑
i=1

l̃ki − l̂ki (47)

rmslk =

√√√√ 1
n

n∑
i=1

v2
lki

(48)

The tables 2 and 3 summarize the results.
Hereby it has to be mentioned, that the yaw angle
is intentionally not listed in the tables. This is
due to a problem with the mechanisation of the
z-gyroscope, which led to an fluctuation range
of the rms between 80◦-100◦ in case of the un-
aided respectively between 10◦-14◦ in case of the
aided orientation, without significant differences
between the chosen algorithms. It has to be un-
derlined that in this case the reductions of the
rms is achieved through the use of additional ob-
servation information and not through the choice
of the processing algorithm. Apart from that the
dimensions of the results correspond with those
from the simulations.

Table 2 Results of processing the field data using
the EKF

unaided ori. aided ori.

∆̄ rms ∆̄ rms
lk [m] 0.620 0.449 0.575 0.386
qk [m] 4.420 2.083 3.942 1.778
h [m] 0.012 1.131 0.006 1.060
α [◦] 0.1457 3.5769 0.2145 1.6424
β [◦] −2.8932 2.5899 −2.6715 1.1711

Table 3 Results of processing the field data using
the UKF

unaided ori. aided ori.

∆̄ rms ∆̄ rms
lk [m] 0.724 0.449 0.675 0.500
qk [m] 0.782 0.565 0.563 0.477
h [m] 0.053 0.289 0.045 0.289
α [◦] −5.6236 2.3392 0.2131 0.1503
β [◦] −3.4452 1.1608 0.1057 0.1178

In case of the unaided orientation it can be
seen, that using the EKF results in inhomoge-
neous estimated position components, which is
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shown by a considerable deviation in the cross-
ways component qk. In contrast to that the UKF
provides a more homogeneous output regarding
the lengthways and crossways components.

In case of the additional aided orientation the
accuracy of the position estimations slightly im-
prove for both algorithms. But more important
the orientation estimations can be significantly
improved. For the EKF the effect mainly man-
ifests in a reduced standard deviation, while an
unexpected high estimation error of the cross-
ways component qk still remains. This is caused
through an error in the initial point, which de-
grades the whole navigation solutions. In case of
the UKF the additional aiding of the orientation
manifests as an improvement of both the accuracy
and the precision.

One reason for this outcome is found in the
choice of the platform. By using a land vehicle the
changes in roll and pitch are quite small compared
to those in the yaw axis. Since the experiment was
conducted on a trajectory with many sharp turns
to ensure working algorithms, drastic changes
were detected by the yaw axis gyroscope. In
combination with the mechanical inconsistency
the detected errors occured.

As it can be seen in table 3, the use of the UKF
provides better results in post-processing. But an
inspection of the associated histograms (figures
5 and 6) reveals that a normal distribution can
only be assumed for modelling the orientation
errors.

0 1 20

10

20

30

[m]

[%
]

(a) Histogram of ∆lk
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(b) Histogram of ∆qk
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20

30
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(c) Histogram of ∆h

Fig. 5 Histograms of the position errors for the
aided UKF result
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(a) Histogram of ∆α
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(b) Histogram of ∆β

Fig. 6 Histograms of the orientation errors for the
aided UKF result

5 Conclusion
To detect the locations in need of rehabilitation
in a time- and cost-efficient way with a posi-
tion in the world coordinate system a direct geo-
referencing of the PPS is needed. As preliminary
stage a low-cost system was successfully devel-
oped, that enables direct referencing at any given
time through fusion of a GNSS array and MEMS-
IMU measurements. It could be shown, that with
the inclusion of the IMU as support for the GNSS
array the target of a lane precise positioning could
be achieved in more than 99% of the time.

For the future development of this system, the
assumption of normally distributed measurement
noise has to be replaced by correlated noise and
should be taken into account accordingly. Addi-
tionally, for the long-term objective of developing
an adequate geo-referencing of highest accuracy
for use with the PPS, changing the fusion archi-
tecture to a tight coupling, meaning a centralized
processing of the raw GNSS data in the form of
pseudoranging and doppler measurements, could
be a promising way of maxing out the potential
of the system. Furthermore, for higher accura-
cies, the MEMS-IMU has to be replaced with a
superior sensor and differential GNSS positioning
or real time GNSS corrections need to be applied.
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