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Abstract Nowadays, the areal deformation analysis 
has become an important task in engineering 
geodesy. Thereby, not only manmade objects are of 
high interest, also natural objects, like plant organs, 
are focused more frequently. Thus, the analysis of 
leaf growth, i.e. the spatial development of the leaf 
surface, can be seen as a problem of deformation 
monitoring. In contrast to classical geodetic tasks, 
the absolute size of the deformation of the leaf 
surface is small, but usually great compared to the 
object size. Due to the optical characteristics of leaf 
surfaces, the point clouds, commonly acquired with 
high precision close-up laser scanners, provide a 
point-to-point distance that is small or equal 
compared to the measurement accuracy. Thus, the 
point clouds are usually processed and the leaf area 
is derived from a triangulation-based surface 
representation (mesh), resulting in a significant 
uncertainty of area calculation. In this paper, we 
illustrate the lacks of the mesh-based leaf area 
calculation. Using high precision gauge blocks as 
well as a number of tomato leaves, uncertainties of 
the area derivation are revealed and evaluated. The 
application of a B-spline approximation illustrates 
the advantages of an approximation-based approach 
and introduces the prospect for further research. 
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1 Introduction 

In this section, the relevance of plant phenotyping 
as well as the connection between plant 
phenotyping and deformation analysis is addressed, 
followed by the aim of the study. 
 
1.1 Relevance of plant phenotyping 
 
Due to the increase of the world’s population and 
the resulting food scarcity, the breeding of high 

quality plants has become an important tool to 
counteract the world hunger problems (Tester and 
Langride 2010). Plant breeding is focused on 
developing new types of plants – so called 
genotypes – that are more resistant against several 
environmental impacts like draught stress, nutrient 
availability as well as biotic and abiotic stress 
(Furbank and Tester 2011). The response of the 
plant to environmental conditions is not only a 
functional reaction (Gilroy 2008). Thus, a change in 
growth rate of fast developing crops or vegetables is 
a sensitive and direct indicator of stress (Omasa et 
al. 2007). In this context, plant phenotyping 
describes the acquisition of functional and spatial 
characteristics of genotypes under specific 
environmental conditions. 
 
1.2 Relation to deformation analysis 
 
Plant phenotyping, especially the monitoring of 
plant growth, can be addressed as a deformation 
analysis. Thereby, the plant can be seen as a 
multiple input multiple output – system (MIMO), 
where the input values describe the environmental 
conditions and the output values are growth 
parameters like the leaf area or other phenotypic 
parameters. The spatial change of a plant combines 
both types of deformation, i.e., rigid body 
movements and changes in shapes and dimension 
(Chrzanowski et al. 1993): rigid body movements 
due to a movement of the whole leaf and changes in 
shape and dimension due to the growth. We only 
consider the latter type of deformation here. This 
deformation can be analyzed in one of the common 
deformation models (Heunecke et al. 2013). A 
classical phenotypic growth analysis is evaluated in 
an identity- or a static deformation model, 
depending on whether additional information, e.g. 
about water or nutrient supply, are available (Paulus 
et al. 2014a) or not (Rose et al. 2015). The spatial 
development of a plant is usually described by 
growth parameters like leaf area or convex hull 
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volume, derived from 3D point clouds measured 
with different 3D imaging systems (Paulus et al. 
2014a, Rose et al. 2015). 
 
1.3 Aim of the study 
 
One of the most frequently applied growth 
parameters is the leaf area. Usually, the leaf area is 
derived from a triangulation-based surface 
interpolation, a so-called mesh, using processed 
point clouds of various 3D imaging systems (Paulus 
et al. 2014a, Bellasio et al. 2012, Hosoi et al. 2011). 
In this study, we want to illustrate the lacks of the 
deformation analysis using the leaf area as growth 
parameter, derived from a meshed surface. Using 
high precision gauge blocks as well as leaves of a 
five of tomato plants, we show the dependency of 
the leaf area on the processing of the point cloud. 
The application of an approximation-based 
approach using uniform B-splines improves the area 
derivation for the gauge block measurements and 
also for the leaf area calculation. 
Hence, the need of using an approximation-based 
approach with a freeform parameterization instead 
of using the mesh-based approach for modeling 
leafs is highlighted in this study. These 
considerations can be transferred to other kinds of 
deformations analyses of natural objects.  
 
2 Data acquisition 

In the first two subsections the technical measuring 
setup and the special characteristics of leaf 
measurements are addressed, followed by a 
description of the data processing and the derivation 
of the leaf area. 
Because phenotyping on organ level is mostly 
performed using young plants (leaf area < 2500 
mm²) and the growth rate is often small (only a few 
mm² per day), measurements were performed with a 
high precision industrial measuring system.  
 
2.1 3D laser scanner for leaf surface 
acquisition 
 
The laser scanning device used in this study is a 
combination of the triangulation-based 2D close-up 
laser scanner “ScanWorks V5” from Perceptron 
company and a 7 DoF articulated measuring arm 
“Infinite 2.0” from ROMER company. This 
measuring system provides a 3D point repeatability 
of 45 µm and a 3D length accuracy of  

69 µm, defined as maximum permissible error 
(mpe). The laser scanner works according to the 
light section method (Donges and Noll 1993) and is 
able to measure 7640 points per profile with a 
maximum profile frequency of 60 Hz in a field of 
view of ~105 mm x 110 mm (middle measuring 
range). This results in point resolution of ~14 µm 
within one laser line. Due to the combination of the 
laser scanner and the measuring arm, the small 
measuring range of the scanner is extended to a 
spherical measuring volume with a diameter of ~ 
2.8 m. 
 
2.2 Measuring leaves surfaces with lasers 
 
Measuring plant development using commercial 
high precision laser devices is not trivial at all. 
Compared against most of the manmade objects 
plants provide some special characteristics that have 
to be taken into account: 
 

1. The complexity of the plant structure, 
2. the movement of the plant and 
3. penetration of the laser beam. 

 
The complexity of the plant mainly affects the 
completeness of the resulting point cloud. Despite 
using a sensor with highest flexibility, it is not 
always possible to achieve an occlusion free point 
cloud of the whole plant surface. Depending on the 
species and the age of the plant, the leaf structure is 
more or less complex resulting in an overlapping of 
leaves or an occlusion of the stem structure. 
The movement of the plant can be separated into 
movements caused by the flow of the air and the 
proper motion of plants, the so called plant tropism 
(Gilroy 2008). While the plant tropism causes a 
rigid body movement between two measuring 
epochs, the movement of the air provokes a 
swinging of the leaf mainly manifesting in high 
measuring noise. Thus, the parameters estimated for 
the growth analysis should be rotation- and 
translation- invariant and should be able to handle a 
poor signal-to-noise ratio. 
The accuracy of the point cloud is also affected by 
the special optical properties of the leaf surface. 
Leaf surfaces consist of different layers providing 
different optical properties (Paulus et al. 2014b). 
Thus, the emitted laser line is able to penetrate the 
leaf surface and to interact with the photoactive leaf 
tissue content, the chlorophyll, resulting in a partial 
absorption of the emitted laser ray (Dupuis et al. 



2015). While the absorption leads to a weakening of 
the received measuring signal and therefore, to 
higher measuring noise (Dupuis and Kuhlmann 
2014) or a signal that is not evaluable, the 
penetration into the leaf structure causes a 
systematic deviation of the distance measurement. 
This systematic deviation is not constant. It rather 
depends on the type of the plant as well as on the 
physiological state (Dupuis et al. 2015). 
 
Beside the reduced accuracy, the point cloud shows 
an irregular point distribution, cause by the hand-
operated measuring system. Within one scanline the 
point-to-point distance is nearly constant with a 
magnitude of about 14µm. In contrast, the distance 
between two consecutive scanlines strongly 
depends on the moving speed of the operator. Thus, 
to achieve a complete point cloud of the leaf surface 
it has to be scanned several times with different 
orientations of the laser line. Furthermore, the 
distance between two adjacent points is usually 
small compared to the measuring noise. 
All these aspects affect the resulting point cloud and 
have to be considered in the processing step before 
data analysis. 
 
2.3 Processing of the point cloud 
 
The processing of the point clouds usually consists 
of three main steps (Paulus et al. 2013, 2014a, 
2014b). These processing steps were performed 
using the commercial software Geomagic Studio 
and Geomagic Control (3D Systems, USA).  
In the first step, outliers like scanning artefacts, 
caused by overexposure of the sensor, and objects 
that do not belong to the plant were removed 
manually from the raw point cloud. 
In a second step, the point cloud of the plant was 
separated manually into points representing single 
leaves and stem points. Theoretically, this step can 
be replaced by an automatic classification 
procedure, like Surface Feature Histograms (Paulus 
et al. 2013). However, we decided to use a manual 
labeling process because the automatic algorithm 
already requires a processed point cloud with a 
regular point distribution. 
To provide a regular point distribution, in the third 
step, the point clouds were thinned out using the 
algorithm provided by Geomagic Control software. 
Thereby, the software reduces the number of points 
as long as the defined minimum point-to-point 
distance is reached. Against algorithms like noise 

reduction or surface smoothing, thinning only 
eliminates a subset of points as long as the defined 
point distribution is reached. Thus, the remaining 
point cloud contains a reduced number of raw data 
points. 
 
2.4 Derivation of the leaf area 
 
From the separated and regularly distributed point 
cloud, a mesh was calculated. Thereby, the data 
points were interpolated by a network of triangles 
following the fundamentals of the Delaunay 
triangulation (Delaunay 1934).  
The interpolation was performed using the 
algorithm implemented in Geomagic Control 
without any smoothing options, so that every vertex 
in the mesh represents a raw data point of the point 
cloud. Using this representation, it is possible to 
calculate the leaf area by summing up the area of all 
faces of the mesh. 
 
3. Theoretical impact of point cloud 
processing on the area derivation 

Because a mesh depicts an interpolation of 
neighboring surface points, the presence of 
measuring noise has to be taken into account. 
Figure 1 A shows a cross section of a surface and 
the measured point cloud. The distance between 
two neighboring points is partially small compared 
to measuring noise as it can be expected for 
measurements performed with the appointed 
scanning device. Meshing the raw point cloud data 
results in connection of all neighboring points (red 
line) and, therefore, in an area that is derived to 
large. Thinning the point cloud, i.e. reducing the 

Fig. 1: A) Cross section of a surface and the measured point 
cloud. B) Topview of the boundary of a surface. The colored 
lines represent the interpolation for an increasing thinning 
level (R < G < B). 



number of points (green and blue line), causes a 
kind of surface smoothing and results in a smaller 
area derivation that is closer to the real area. 
However, an extensive smoothing also reduces the 
level of detail. 
Another effect that has to be regarded, concerns the 
boundary of the surface (Figure 1 B). Because the 
algorithm tries to keep most boundary points, the 
larger the point-to-point distance is set in the thin-
out procedure, the smoother the boundary is 
interpolated and the larger the area is derived. 
However, this effect is expected to be small 
compared to the aforementioned one. 
 
4 Laboratory Investigations with gauge 
blocks 

As aready written, in most studies the leaf area is 
calculated based on a mesh-based approach whose 
weak accuracy is revealed by the present study. 
This is proven, in the first step, by laboratory 
investigations based on gauge blocks. In the second 
step, the results are transferred to the derivation of 
leaf areas (see Sec. 5). Both times, the results of the 
mesh-based approach are compared to the ones of 
an approximation-based approach using B-Splines. 
 
4.1 Experimental Setup 
 
To provide a reference for the area, we used a set of 
gauge blocks with a deviation from the nominal 
value of 0.10 + 0.0002∙L µm (tolerance), where L 
equals the nominal length of the gauge block in 
millimeter. The width of the blocks was measured 
using a micrometer screw with an accuracy of 0.01 
mm (1σ). 
Five blocks of different size were setup as shown in 
Figure 2 and measured consecutively under 
controlled environmental conditions. To analyze the 
repeatability of the approach, every gauge block 
was measured 27 times. The resulting point clouds 
were processed as described in Section 2.2 and 
different thinning levels ranging from 0.1 mm up to 

0.8 mm point-to-point distance were generated. 
After the generation of the mesh, the surface area 
was calculated for every repetition (see Sec. 2.4). 
 
4.2 Results of the mesh-based area 
derivation 
 
In Table 1, representative results of a gauge block 
with a dimension of 30 x 34.95mm², i.e. a nominal 
area of 1048.5mm², are shown. It can be seen that 
the calculated area varied with the defined thinning 
level. The calculation performed on the raw point 
cloud resulted in an area that was about 5 % larger 
compared to reference value. The larger the point-
to-point distance was chosen, the smaller the area 
was calculated. Furthermore, the standard deviation 
of the 27 repetitions was higher in case of no 
thinning and 0.1 mm thinning and reached about 3 
mm² for larger point distances. The minimum 
deviation from the reference area was obtained at a 
thinning of 0.4 mm. However, these results are not 
generally applicable. As we used gauge blocks of 
different sizes ranging from 331.5 mm² to 2446.5 
mm², larger areas showed partially different 
behavior. While the trend - the stronger the thinning 
process the smaller the calculated area - pertained 
for all tested objects, the minimum deviation from 
the nominal value was reached for different 
thinning levels. For smaller blocks, the minimum 
deviation was obtained for a thinning with a point-
to-point distance of 0.4 mm and for larger blocks at 
0.8 mm and more. 

 reference area: 1048.5 mm² (± 0.3mm²) 

 raw data 0.1 mm 0.2 mm 0.3 mm 0.4 mm 0.5 mm 0.6 mm 0.7 mm 0.8 mm 
avg. area [mm²] 1100,013 1073,480 1056,827 1051,389 1048,511 1046,523 1045,108 1043,338 1042,920 
std.-dev. [mm²] 9,780 5,654 3,490 3,039 3,002 2,593 2,900 2,942 2,627 
std.-dev. [%] 0,9% 0,5% 0,3% 0,3% 0,3% 0,2% 0,3% 0,3% 0,3% 
ref. - act. [mm²] -51,513 -24,980 -8,327 -2,889 -0,011 1,977 3,392 5,162 5,580 
ref. - act. [%] -4,9% -2,4% -0,8% -0,3% 0,0% 0,2% 0,3% 0,5% 0,5% 

Table 1: Averaged area of a 30 x 34.95 mm² gauge block for different thinning levels ranging from no thinning to a point-to-
point distance of 0.8 mm. 

Fig. 2: A) Front and B) side view of the measuring setup. 



The results support the theoretical considerations in 
Section 3. The thinning of the point cloud causes a 
smoothing and, therefore, the derived area 
decreases with an increasing point-to-point 
distance. The averaged area values for 0.5mm to 
0.8mm thinning are even smaller than the reference 
area. This effect can be attributed to the thinning 
procedure. Large thinning leads to reduction of 
important edge points and points at the corners of 
the gauge block resulting too small area values.  
 
4.3 Approximation-based area derivation 
 
In order to avoid the interpolation of a noisy point 
cloud as it is done in the mesh-based approach, the 
surface is approximated this time. Then, the 
adjusted scan points are used to calculate the area. 
The representation of freeform surfaces can be 
realized by approximation approaches like NURBS. 
Due to the flat surface of the gauge blocks, we 
applied an approximation using B-spline as a 
simplification of NURBS. This procedure is 
explained in the following in more detail.  
 
4.3.1 B-spline approximation 
 
B-splines have shown their applicability in geodetic 
applications, e.g. for the analysis of ground 
movements in height networks (Holst and 
Kuhlmann 2015), and also in non-geodetic 
applications like the analysis of fractured surfaces 
in material research (Werner et al. 2012) or for the 
approximation of leaf surfaces (Harmening and 
Neuner 2015, Kempthorne et al. 2015). 
The representation of a curve by splines is based on 
the piecewise approximation with polynoms of 
grade n. The extension of the one dimensional curve 
in a second direction enables the approximation of 
the surface points P(x,y) using the tensor product 
 

𝑃(𝑥, 𝑦) = � �𝑃𝑖,𝑗 ∙ 𝑁𝑖𝑛(𝑥) ∙ 𝑀𝑗
𝑚(𝑦)

𝑀−1

𝑗=0

,
𝑁−1

𝑖=0

 (1) 

Where Pi,j are the knot points, N and M depict the 
basis function of grade n and m in x- and y-
direction, respectively. A further detailed 
description of splines can be found in Niemeier 
(2008), Heunecke et al. (2013) as well as 
Harmening and Neuner (2015).  
For the generation of the knot points for the 
piecewise approximation, the point clouds of the 
gauge blocks were rotated into their principle axes 

and a regularly distributed xy-grid was calculated. 
In this preliminary approach the number of knot 
points was chosen in a way, that the coarse leaf 
structure is modeled adequate. After the estimation 
of the spline parameters using a Gauss-Markov 
model, adjusted observations were derived with a 
point-to-point distance of 0.1 mm. The area was 
limited by the boundary points of the point cloud 
extracted by an alpha shape approach (Edelsbrunner 
and Mücke 1994). Using the best-fitting point 
clouds, meshes were calculated and the area was 
derived as described in Section 2.3. 
To compare the results to the existing approach, all 
point clouds of the different thinning levels, 
generated with Geomagic Control were 
approximated by spline surfaces. 
 
4.3.2 Results of the approximation-based 
area derivation 
 
Due to the approximation, the adjusted point clouds 
as well as the generated meshes provided a much 
smoother surface compared to the raw or thinned 
point clouds. This also manifested in the results of 
the area calculation. For all investigated gauge 
blocks, the standard deviation of the random 
samples was nearly constant for all thinning levels 
providing only a small dispersion. Regarding the 
magnitude, the smaller blocks (~340 mm²) resulted 
in a standard deviation of 0.9 % while the larger 
blocks (~1000 up to ~2500 mm²) provided a 
standard deviation of 0.4 %. This is only slightly 
higher than the mesh-based interpolation but 
independent from the point distribution and density 
of the point cloud. 
Another difference concerns the deviation of the 
calculated area values from the nominal ones. For 
the mesh-based approach, the minimum deviation 
from the nominal area value was reached for 
different thinning levels depending on the size of 
the gauge block (see Sec. 4.2). Using splines, with 
the exception of the largest block, the smallest 
deviations from the nominal value were obtained 
for the approximation of the raw point cloud data, 
with a magnitude of less than 1 % for all tested 
block sizes. Similar to the mesh-based results the 
derived area decreased with an increasing point-to-
point distance. However, the impact of the thinning 
procedure is much smaller. 
These results imply that the approximation-based 
approach is more robust against the point 



distribution and density as well as against the 
presence of measuring noise. 
 
4.4 Comparison of the mesh- and the 
approximation-based approach 
 
Calculating the surface area from a mesh-based 
surface representation requires a processing of the 
point cloud, in order to avoid an overestimation of 
the area. Due to presence of measuring noise, 
unprocessed point clouds result in a highly 
structured mesh and, therefore, in an area that is too 
large compared to nominal area. To counteract this 
effect the point clouds have to be thinned out. 
However, this thinning procedure has to be adapted 
to the overall size of the object, because larger areas 
need a larger point-to-point distance to provide a 
minimum deviation from the nominal area (see Sec. 
4.2). 
Using an approximation-based approach, the 
minimum deviation from the nominal area was 
achieved for raw point cloud data. Thus, the derived 
area is independent of the thin-out procedure with a 
deviation of less than 1 %. Furthermore, the 
standard deviation of the random samples is 
constant for different point densities and 
distributions. As shown in Section 4.2.3, the area 
calculation based on the approximation-based 
approach is more reliable and accurate for the 
investigated point-to-point distances. 
 
5 Derivation of the leaf area 

In this section, the results of the mesh-based and the 
approximation-based approaches used for the 
derivation of leaf areas of tomato plants are 
illustrated.  
 
5.1 Results of the mesh-based leaf area 
derivation 

 

To check, whether the effects revealed for the gauge 
blocks are directly transferable to plant 
measurements, a random sample of five tomato 
plants measured over a period of 7 days was 
analyzed using the mesh-based approach. 
Contrary to the laboratory investigation with gauge 
blocks, in case of leaf surfaces no nominal area 
values were available. Thus, we were only able to 
analyze the variation of the leaf surface for different 
thinning levels. 
Principally, the calculated leaf area for the different 
thinning levels followed a similar trend as it was 
found for the gauge blocks. The larger the point-to-
point distance at the thin-out procedure was chosen, 
the smaller the leaf area was derived. However, 
there were significant differences that have to be 
stated here. 
First of all, calculating the leaf area using the raw 
point cloud data sometimes resulted in area values 
that were smaller compared to the areas calculated 
from the thinned point clouds. Because of the 
reduced measuring accuracy and the systematic 
deviations (see Sec. 2.2) the ratio of measuring 
noise and point-to-point distance became worse 
resulting in too highly creased edges which in turn 
leads to perforated surface mesh (Figure 3). 
Another difference concerns the decrease of the leaf 
area with an increasing point-to-point distance: 
While the reduction of the gauge blocks was 
relatively small, e.g. around 5 % for the data 
presented in Table 1, the mean decrease of the leaf 
area was about 30 %, averaged over all five tomato 
plants and all measuring dates. Furthermore, the 
trend of the reduction was not constant. It differed 
for every single leaf of a plant and changed with 
every new measuring epoch. 
This uncertainty in the leaf area calculation, of 
course, affected the derivation of the growth. The 
absolute growth of the leaf area was calculated from 

Fig. 3: A mesh calculated from raw point cloud data 
providing a perforated surface representation. 

Fig. 4: Absolute growth, i.e. the difference between the areas 
of two consecutive days, of one representative plant at 
different thinning levels.  



the difference of two area values of two consecutive 
measuring epochs using the same thinning level. 
Thereby, the growth for the different thinning levels 
varied significantly (Figure 4). Due to the 
inconsistent decrease of the leaf area with 
increasing thinning level, the growth was also not 
constant for a single leaf. In most of the cases, the 
variation of the absolute growth was great 
compared to the mean growth value (cf. leaves no. 2 
and 4 in Figure 4), averaged from all thinning 
levels. In some cases, the range of the variation 
even exceeded the mean growth value. 
Consequently, small deformations, as they were 
expected for daily measurements, were not 
statistically detectable. 
These results clearly reveal that the mesh-based 
approach used in many studies does not lead to 
reliable and accurate estimates of the leaf growth.  
 
5.2 Application of B-splines to leaf surfaces 
 
Applying the B-spline approach, appointed in 
Section 4.3.1, to leaf surfaces imposes some 
requirements on the shape of the leaf surface. 
Because the approximation is performed on a planar 
grid, the leaf surface should not provide high 
curvature. Furthermore, boundary points should be 
clearly extractable by the used alpha shape 
approach, i.e. deep leaf indentations may cause a 
systematic deviation. To illustrate the general 
applicability of splines for the derivation of leaf 
areas, we approximated one leaf, providing a 
surface with small curvature and only small leaf 
indentations. The approximation was performed on 
different thinning levels in order to compare the 
results to the mesh-based approach. 
In Figure 5, the deviations between the 
approximated leaf surface and the raw point cloud 
are illustrated. The distribution of the deviations 
shows that the approximation represents the rude 
shape of the leaf. However, smaller details, like leaf 

veins, were smoothed. Finally, the comparison 
resulted in a standard deviation of 91 µm. 
As described in Section 4.3.1, the area was 
calculated from meshes generated from the adjusted 
point clouds of the spline approximation. The 
results of both approaches (Table 2) show that the 
derived leaf area differs significantly. Comparable 
to the results in Section 5.1, the leaf area of the 
mesh-based approach decreased considerably 
(about 25 %) for the different thinning levels. In 
contrast, the leaf area of the approximation-based 
approach varied only little. The decrease reached 
only about 4% between the smallest and the largest 
point-to-point distance. Furthermore, due to the 
smoothing of the spline approximation, the 
magnitude of the area was smaller for all thinning 
levels. 
Despite the promising results for the appointed leaf, 
there are limitations regarding the shape of the 
approximated leaf. As described in the beginning of 
this section, the uniform implementation of the B-
splines, defined on a planar grid with equidistant 
knot points, restricts the maximum curvature of the 
leaf. For the approximation of arbitrary leaves, the 
grid has to be adapted to the shape of the leaf 
surface as it is described for example in Harmening 
and Neuner (2015) by using Coons patch.  
 
6. Conclusion 

The investigations illustrated the lacks of the mesh-
based approach, commonly used for the calculation 
of the leaf area from 3D point clouds. Laboratory 
experiments with high precision gauge blocks 
revealed deviations from the nominal area values 
varying with the thinning level, i.e. the defined 
point-to-point distance, as well as with the absolute 

thinning level mesh-based 
[mm²] 

approx.-based 
[mm²] 

raw data 710,727 551,269 
0.1 mm 729,872 549,898 
0.2 mm 648,709 547,888 
0.3 mm 613,970 545,136 
0.4 mm 592,005 542,049 
0.5 mm 581,631 537,482 
0.6 mm 574,069 537,974 
0.7 mm 567,416 532,309 
0.8 mm 578,672 531,608 
range 151,200 19,661 

range/avg. 24,3% 3,6% 

Fig. 5: Deviations [mm] between the B-spline approximation 
and the raw point cloud data. 

Table 2: Comparison of the mesh-based and the B-spline-
based leaf area. 



size of the measured surface. This effect got 
reinforced on plant surfaces due to the reduced 
measuring accuracy. Leaf area variations caused by 
different thinning levels reached a magnitude of  
30 % of the mean leaf area on average (see Sec. 
5.1). For the purpose of a deformation analysis, this 
uncertainty, as a result of data processing, 
exacerbates the reliable detection of leaf growth.  
An improvement for the area calculation was 
obtained for the approximation with uniform B-
splines. For the gauge blocks, the minimum 
deviation from the nominal values was reached by 
approximating the raw point cloud data and the 
variations caused by different point-to-point 
distances became small. 
Promising results were also obtained for the B-
spline approximation of leaf surfaces. However, the 
uniform implementation of the splines prevented 
the general applicability on arbitrary leaf surfaces. 
However, non-uniform implementations of B-
splines like NURBS may improve the 
approximation of arbitrary, highly curved 3D leaf 
surface shapes and, thus, can improve the leaf area 
calculation and, therefore, the deformation analysis. 
The investigations have shown the significance for 
the development of a freeform surface 
representation of natural objects like leaves 
surfaces. The difficulty of such a development is 
characterized in Holst and Kuhlmann (2016). First 
promising results for the approximation of leave 
surfaces were obtained by Harmening and Neuner 
(2015). 
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