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ABSTRACT 

B-spline surfaces possess attractive properties such as a high degree of continuity, which is important for 

computing curvature. Since the local support of the basis functions allows to control the shape of the estimated 

surface, they are increasingly used in the field of geodesy, where their main application is the fitting of surfaces 

to, e.g., 3D point clouds obtained from terrestrial laser scanners (TLS). By comparing different epochs, 

deformation can be detected more easily for nearly all kind of objects by using  test statistics such as the 

congruency test.  

The concept of surface approximation is similar to a regression problem where the model is the surface 

representation and the data are the sampled points on the surface. Consequently, besides improving the 

functional model with new strategies to determine the knot vector, the stochastic model of the underlying 

observations has to be correctly specified. Otherwise, biases in test statistics are unavoidable and compromise 

the detection of small deformations when the congruency test is used. Unfortunately, measurements from TLS 

are not as simple as point clouds for Computer Aided Graphics: the raw observations are not directly Cartesian 

coordinates but polar coordinates, i.e. range and angles, which additionally possess different variances. A 

transformation from polar to Cartesian coordinates is mandatory to determine the weighting functions or 

control points of the B-splines approximation by a least-squares adjustment. Mathematical correlations are thus 

introduced in the already heteroscedastic transformed observations. As they lead to fully populated variance 

covariance matrices, they remain mostly neglected and an oversimplified stochastic model is used assuming 

homoscedasticity and independency of the transformed observations. In this contribution, the impact of 

neglecting mathematical correlations in deformation analysis with the congruency test will be studied. It will be 

shown that these correlations can eventually be reduced to an inflation variance factor, which allows for their 

simplified handling in matrix products. In a case study with real data from a bridge under loading, the impact of 

neglecting them will be investigated, highlighting in which cases considering mathematical correlations in the 

congruency test is necessary or not for a trustworthy deformation detection. Heteroscedasticity will be taken 

into consideration using an intensity-based model accounting for geometry and object properties. 
 
 

I. INTRODUCTION 

 
One of the key problems of civil engineering is 

the detection of a structure’s deformation to identify 

damages and to avoid tragic experiences of a total 

collapse of a bridge (Gumus et al. 2013). As they can 

acquire three-dimensional high-density point clouds of 

nearly every object quickly and without complex and 

expensive surveying methods, terrestrial laser scanners 

(TLS) have gained an increased interest for deformation 

analysis applications, see e.g. Xu et al. (2018), Yang et 

al. (2017), Pesci et al. (2013). Deformations can be 

detected with specific software by comparing directly 

the point clouds taken at different epochs, provided 

that an accurate registration is performed (Paffenholz 

and Bae 2012). However, the impact of outliers, errors 

and scattering is not considered in this direct approach. 

Another possibility is thus to mathematically 

approximate the scanned surfaces and to compare the 

approximations obtained at different epochs, by 

accounting for the measurements’ uncertainties. 

Because it is a flexible method, surface approximation 

using B-splines is becoming more and more popular in 

the field of geodesy (Bureick et al. 2016). Indeed, the 

restriction due to the use of geometrical primitives such 

as circles, planes and cylinders with the Gauss-Helmert 

Model (cf. Lenzmann and Lenzmann 2004) is avoided. 

Nearly every object can be approximated with B-
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splines, and improvements e.g. with respect to the 

determination of the knot vector remain an active field 

of research (Piegl and Tiller 1997, Gálvez et al. 2015, 

Bureick et al. 2016). Using this regression splines 

approach, the so-called control points (CP) change the 

shape of the curve, and their coordinates are 

determined by means of a least-squares (LS) 

adjustment, where the aim is to minimize the quadratic 

error between the Cartesian coordinates of the point 

clouds and the approximated surface. An efficient LS 

solution is of main importance when statistical tests 

such as the congruency test are used for deformation 

detection (Williams et al. 2013). Consequently, the 

variance covariance matrix (VCM) of the measurements 

has to be specified as accurately as possible (Greene 

2003). Dealing with TLS observations, the VCM will thus 

contain information about the variances of the ranges 

and angles. Heteroscedasticity can be modelled by 

means of the datasheet of manufacturers, which give a 

first indication about the uncertainties of the raw 

measurements. An improved model was developed for 

the range variance by means of a power function based 

on the raw intensity of the reflected objects (Wujanz et 

al. 2017). As the Cartesian coordinates of the CP are 

needed in a B-spline approximation, the raw 

observations have to be transformed firstly from polar 

to Cartesian coordinates, which therefore become 

correlated. Using the propagation law, the VCM of the 

transformed coordinates is thus fully populated. 

Through this manuscript, the term “mathematical 

correlations” will be used to designate the particular 

type of correlations due to the transformation from 

polar to Cartesian coordinates. In contrast, “physical 

correlations” stem from external (e.g., atmospheric 

transmission) or sensor internal factors (i.e., within the 

sensors themselves) and are neglected in this 

contribution. Indeed, the correlation structure of the 

measurements remains to be studied more thoroughly 

as only the residuals of a LS approximation for a plane 

fitting have been investigated to date (Kauker and 

Schwieger 2017). Since the transformed diagonal VCM 

is sparse fully populated, it is questionable whether 

mathematical correlations could be neglected in the LS 

adjustment without affecting the results of the test 

statistics for deformation analysis. In this contribution, 

we will propose an adapted version of the congruency 

test (Pelzer 1971) dedicated to surface approximation. 

We will assess the impact on the derived test statistic of 

neglecting mathematical correlations up to using only a 

scaled version of the identity matrix to weight the 

Cartesian observations. We make use of a real data set 

of a bridge under loading, where the aim of the 

experiment was to stress and deform the structure 

intentionally. Predefined small and deformed surfaces 

scanned under different geometries were extracted to 

study the impact of mathematical correlations on the 

deformation testing approach.  

The paper is organised as follows: in section II, 

the principle of B-spline approximation is presented 

briefly. We focus specifically on the problem of the 

stochastic model and the mathematical correlations. 

Section III is devoted to the case study. We conclude 

this contribution with some recommendations. 

 

II. MATHEMATICAL BACKGROUND 

A. B-spline surface 

A B-spline surface s  is defined as a network of 

tensor product B-spline surface patches  

     , , ,

0 0

,
n m

i p j q i j

i i

u v N u N v
 

s p   (1) 

The surface is defined over a given domain with local 

coordinates      , 0,1 0,1u v   . For regularly and 

rectangular shaped point clouds with 𝑠 rows and w 
columns, the chord length method (Piegl and Tiller 

1997) is widely employed to determine u  and v . ,i j
p  

are the CP or weighting factors of the basis functions 

,i p
N  and ,j q

N  of degree p and q respectively. These 

functions are defined over so-called knot sequences 

   0 1 0 1
... , ...

n p m q
u u v v

   
 U V  in the u  

and v  direction and can be evaluated by means of a 

recurrence relationship (Piegl and Tiller 1997; de Boor 
2001). In surface reconstruction, one seeks to find the 
control points such that the distance of the data points 
to the approximated surface is minimized. To that aim, 
the minimum in least-squares sense of the zero-mean 
error term v , defined as the difference between the 

Cartesian coordinates of the point cloud l  of size g and 

Ax , is searched. x  is the parameter vector to be 

estimated and A  the deterministic design matrix.  

Calling  E  the expectation operator, we assume 

 E l Ax . If the condition of homoscedasticity of the 

observations holds, i.e. 2

0ll  I , where 
ll  is the 

VCM of the observations, 
2

0
  an a priori variance factor 

and I  the identity matrix of size g2, the estimated 
coordinates of the control points are expressed by 

 
1

ˆ T T

OLSE



x A A A l . This unbiased estimator is 

called the Ordinary Least-squares Estimator (OLSE, 
Koch 1999).  

The optimal number of control points can be 
determined using Information Criteria such as BIC or 
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AIC (Alkhatib et al. 2018). Although similar in their 
formulation, these two criteria are fundamentally 
different in their philosophy. Whereas BIC is said to be 
consistent since the data generating model will be 
selected with growing data size, AIC is efficient and 
selects the model that predicts the observed data with 
smallest error. Both criteria may give a different 
optimum solution. This holds particularly true under 
model misspecification, e.g., if the data are only poorly 
approximated by B-splines or if correlations are 
present. In this contribution, the real data used are 
unproblematic and correspond to an easy-to-model 
geometry, so that the results of BIC and AIC agree and 
are not further discussed. Thus, the functional model of 
the LS adjustment is considered as optimal. 

 
B. The generalized least-squares estimator 

Because of the deterministic nature of the design 
matrix, the unbiasedness of the estimator, expressed as 

 ˆE x x , is not affected by the violation of the 

condition of homoscedasticity (Kutterer 1999). 
However, the properties of the OLSE and resulting test 
statistics are strongly influenced by unequal variances 
or correlations of the observations (Williams et al. 

2013). If 
ll  is no longer a scaled identity matrix but 

becomes fully populated or heteroscedastic, i.e. 
2

0 0ll  Q , with 
0

Q  defined as the cofactor matrix of 

the observations, the OLSE is not most efficient within 
the class of linear unbiased estimators anymore so that 
hypothesis testing such as the global test or outlier tests 
becomes invalid. Exemplarily, the a priori and a 
posteriori VCM of the estimates defined as follows are 
biased: 

 
1

2

0_apriori 


 T

xx_OLSQ A A  and 

 2

0 _

1

_
ˆ

OLSaposteriori 


 T

xx_OLSQ A A , where 

2

0 _
ˆ

OLS
r t

 


T
v v

 is the a posteriori variance factor, t being 

the total number of estimated CP. These matrices are 
unfortunately involved in congruency tests, which are 
used to detect deformations. As the t and F statistics 
depend on the elements of these VCM, they no longer 
have the desired t and F distributions under the null 
hypothesis that no deformation occurs. Consequently, 
inference based on these tests is not valid anymore. 

When approximating point clouds with B-splines, the 
assumption of homoscedasticity is common. Indeed, for 
many applications, obtaining a smoothed approximated 
surface from scattered point clouds is the main focus, 
and the computational burden associated with fully 
populated VCM has to be reduced. In the field of 
geodesy, however, derived quality indicators turn out 
to be of major interest since outliers or deformations 
have to be identified. Consequently, the correct 
weighting of the observations has a high priority. 

As an answer, the Generalized Least-Squares 
Estimator (GLSE) is thus introduced to improve upon 
estimation efficiency (Greene 2003). In that case,  

 
1

0 0
ˆ T T

GLSE



x A P A A P l    (2) 

where 
1

0 0


P Q . The VCM of the estimates is 

 
1

2

0 0_apriori 


 T

xx_GLSEQ A P A  or 

 
1

2

0 0_
ˆ

aposteriori 


 T

xx_GLSEQ A P A  with 

02

0 _
ˆ

r t
 



T

GLSE

v P v
.  

Unfortunately, the GLSE cannot be estimated as the 

true VCM 
0

Q  can only be estimated by Q̂ , e.g. based 

on expert knowledge. Because in general 
0

ˆQ Q , a 

bias will always remain in the quantity of interest for 
statistical tests (Kutterer 1999, Kermarrec et al. 2017). 
 

Heteroscedasticity 
The three measurements of a TLS are (i) the range r  

expressed in [m], (ii) a vertical and (iii) an horizontal 

angle called VA  and HA  respectively, expressed in [°] 

or [gon]. These quantities have different stochastic 

properties, which are quantified by their variances 
2

r , 

2

HA  and 
2

VA . Whereas the angle variance is often 

assumed to be non-stochastic and is taken constant 
based on manufacturer datasheet (Boehler and Marbs 

2002), r  will vary depending e.g. on r , properties of 

the reflected object and eventually atmospheric 
transmission (Soudarissanane et al. 2011, Zamecnikova 
et al. 2015).  

We follow the proposal of Wujanz et al. (2017) and 
model the range variance as depending on the Signal to 

Noise Ratio (SNR) between the power emitted E
P  and 

received R
P . This quantity measures the strength of the 

target echo and is also loosely called intensity assuming 
an extended Lambertian (diffuse) target (Andrews and 

Phillips 2005). From a theoretical perspective, r  can 

be shown to be proportional to the square root of the 
SNR (Hebert and Krotkov 1992). Empirically, this 
dependency was confirmed using the TLS in 1D mode, 
as well as by residual analysis of plane fitting (Wujanz et 
al. 2017, 2018). The range variance could be fitted with 

a power function r
Intc


   , where the 

parameters ,     and c  are determined empirically 

by regression analysis for different laser scanners and 

Int  is the raw intensity expressed in [Inc]. For the TLS 

Z+F 5006H under consideration in our case study, we 
assume a standard deviation of 7° root mean square for 
both angles as well as  , , [ 0.57,1.6,0]c    . For 

a mean raw intensity of 930000 Inc for the selected 
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surfaces, r  reaches thus in mean 0.64 mm. This value 

is close to the one given by the manufacturer datasheet 
(0.7 mm for a reflectivity at 20% corresponding to grey 
reflected objects scanned at 10 m distance) and is thus 
plausible and coherent. 

We further adopt the strategy proposed by 
Kermarrec et al. (2018) to simplify the stochastic 
description of the range and avoid a point-wise 
weighting. Based on a sensitivity analysis of the 

coefficients of the intensity model, we replace 
r

  by a 

global value, which is computed using the mean of the 
intensity values of the object, i.e.  

, ( )r mean Int


      (3) 

where Int  is the mean of the intensities of the 

reflected object. This simplification holds true for 
objects having homogeneous properties, i.e. the 
intensity values should not vary sharply due to e.g. 
challenging scanning geometries. Because we 
approximate small surfaces of a continuous object (a 
bridge), the corresponding conditions are met. 

The stochasticity of the TLS measurements are 
resumed in a matrix form: 

2

0

r

HA _

VA

ˆ

ˆ ˆ=

ˆ

0 0

ˆ0 0 = σ

0 0

without MC

 
 
 
  

Σ

Σ Σ

Σ

Q  (4) 

where the block matrices r HA VA
ˆ ˆ ˆ,  ,  Σ Σ Σ  are sorted 

point-wise and their diagonal elements are given by the 

corresponding variances 
2 2 2

_
, ,

r mean HA VA
   . 

_
ˆ

without MCQ  is the cofactor matrix before taking 

mathematical correlation (MC) into account.  

 

Mathematical correlations 

Contrary to a plane fitting using a Gauss-Helmert-

Model (cf. Wujanz et al. 2017), B-spline approximation 

involves the Cartesian coordinates of the point clouds. 

A transformation from the raw TLS measurements 

expressed in polar to the mandatory Cartesian 

coordinates is thus necessary. The VCM ˆ ˆ
MCQ Q  of 

the Cartesian coordinates of the point cloud is obtained 

by the error propagation law: 
T

_
ˆ ˆ=

MC without MC
Q FQ F    (5) 

The matrix F  contains the derivatives of the point 

coordinates with respect to the range and angles and 

reads for one point i: 

sin( ) cos( ) cos( ) cos( ) sin( ) sin( )

sin( ) sin( ) cos( ) sin( ) sin( ) cos( )

cos( ) sin( ) 0

(6)
i i i i i i i i

i i i i i i i i i

i i i

VA HA r VA HA r VA HA

VA HA r VA HA r VA HA

VA r VA







 
 
 
  

F
 

As a consequence, the corresponding “Cartesian” 
variances for one point of the point clouds are: 

     

     

   

2 2 2

2 2 2

2 2

2 2 2 2

2 2 2 2

2 2 2

cos cos sin sin cos sin

sin cos cos sin sin sin

sin cos    (7)

X HA VA r

Y HA VA r

Z HA r

r HA VA r HA VA HA VA

r HA VA r HA VA HA VA

r VA HA

   

   

  

  

  

 

 

The subscript i is skipped for the sake of readability. 
The Cartesian coordinates become unfortunately 
mathematically correlated and the corresponding 
covariances read: 

 

   

   

   

2

2 2 2 2

2

2

2 2 2

2 2

2 2 2 2

2 2 2 2

cos sin sin ...

cos sin cos sin cos sin

cos sin cos cos sin cos

sin cos sin sin sin cos   (8)

XY YX r

HA VA

XZ ZX HA r

YZ ZY HA r

HA HA VA

r HA HA VA r HA HA VA

r HA HA VA HA VA VA

r HA VA VA HA VA VA

  

 

   

   

  



   

   

 

Fully populated VCM increase the computational 
burden, particularly when a huge amount of points has 
to be approximated. We therefore propose to 
investigate if mathematical correlations can be 
neglected or even replaced by a constant scaling factor, 
following the proposal of Kermarrec and Schön (2016) 
for physical correlations. To that end, we study in a first 
step the behaviour of the ratios of the covariances to 
the corresponding variances, i.e. 

2 2 2

2 2 2, ,
X

XY XY XY

X Y Z

R
  

  
  
  

, 
2 2 2

, ,2 2 2Y

XZ XZ XZ

X Y Z

R
  

  
  

and 
2 2 2

, ,2 2 2Z

YZ YZ YZ

X Y Z

R
  

  
 . Two cases are 

considered: (i) an object situated at a range of 10 m, for 
which a range standard deviation of 0.7 mm is assumed 
following the manufacturer’s datasheet and (ii) in a 
second case, an object at a distance of 25 m, with a 
corresponding range standard deviation of 7 mm. We 

aim to investigate how , ,
X Y Z

R R R  behaves depending 

on the ratio 
2

2
r

HA




. The corresponding results are 

presented in Figure 1, where we restrict ourselves for 

the sake of shortness to 
X

R . The VA  and HA  are 

varied in a range from 0° to 90°. Other combinations can 
be obtained per symmetry from Eq. (7) and Eq. (8). 

In Figure 1 (top), we see that the ratios are under 1, 
even under 0.1 for most of the geometries, i.e. 

combinations of VA  and HA . Consequently, the 

covariances are more than 10 times smaller than the 
variances. Neglecting the cross diagonal elements thus 
seems plausible. Under unfavourable geometries, 
however, it happens that the covariances become large. 
This situation occurs mostly when the angles are close 
to 0 or 90°. In such extreme scanning situations, other 
effects such as physical correlations may additionally 
affect the covariances of the raw observations, which is 
the topic of further studies. In Figure 1 (bottom), the 
range is increased, i.e. its standard deviation is larger 
accordingly. Consequently, the ratios under 
consideration have a stronger variability with higher 
values for a lager range of angles, compared with the 
one presented in Figure 1 (top). This would lead to a 
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stronger effect at the level of test statistics when 
mathematical correlations are neglected. 

 

 

Figure 1. Ratio X
R  (top) for a range of 7 m and a 

corresponding range standard deviation of 0.0007 m and 
(bottom) for a range of 25 m and a corresponding range 

standard deviation of 0.007 m 

 
C. Congruency test for B-splines approximation 

To test for deformation between a first (1) and a 
second (2) epoch, we make use of an adapted form of 
the global congruency test as derived by (Pelzer 1971). 
This adaptation is made necessary since the 
deformation is not tested at the parameter level but 
rather at the level of the estimated surfaces. The 
surface points at a given epoch are estimated by a 

matrix product Fx  from Eq. (1). After determining the 
stochastic and the functional model of the B-spline 
approximation, the uniformly most powerful invariant 
test for deformation can be shown to be based on the 
test statistic: 

2

0

ˆ ˆ

2

ˆ ˆ

ˆ ˆ ˆ ˆ

1 ˆ ˆˆ ˆ
apriori pT


 



TT -1

ΔΔ

T

-1

ΔΔ

ΔΔ ββ

Δ Q ΔΔ Σ Δ

Σ HΣ H

(9) 

where ˆ ˆββ
Σ is the VCM of the estimated CP for both 

epochs and 
ˆ

ˆ
ˆ

 
  
 

epoch1

epoch2

x
β

x
 contains the LS estimates of 

the CP. H  is split in two parts to build a difference at 

the level of the surface points:    epoch1 epoch2
H -F F  

with p rows. 
The a posteriori test statistic is derived similarly by 

replacing the apriori variance 
2

0
  by the a posteriori 

counterpart 
2

0
̂ . In that case, however, aposterioriT  

follows an F-distribution (Teunissen 2000). 

The null hypothesis 
0

H  states that no deformation 

occurs, i.e. 0Δ , where the estimate of the 

deformation or difference between the two surfaces is 

given by ˆ ˆΔ Hβ . The alternative hypothesis 
1

H  is 

0Δ . The test decision involves the quantile 
2

1
pk





based on the 
2

p  test distribution and the significance 

level   . In particular, 
0

H  is accepted if 
2

1
p

aprioriT k


 . 

Clearly, the test statistics aprioriT  or aposterioriT  

involve the VCM of the CP estimates _ apriorixx_GLSEQ  

and _ aposteriorixx_GLSEQ , respectively, through 
ˆ ˆββ

Σ . As 

a consequence, the VCM of the underlying observations 

ˆ ˆ
MC

Q Q  plays a crucial role in detecting a deformation 

or not: neglecting mathematical correlations can 

potentially cause a too small aprioriT  or aposterioriT . This 

situation may arise when the Euclidian norm of the 

surface differences between 2 epochs Δ̂  is small so 

that the subtle effect of accounting for the VCM ˆ ˆΔΔ
Σ  

can be decisive, variations of aprioriT  or aposterioriT  

around the quantile leading potentially to a non-
detection of existing deformation, i.e. wrong 

acceptance of 
0

H . Due to the unbiasedness of the GLSE 

when enough point clouds are processed, changing the 
VCM of the observations does not lead to strong 

differences in estimating Δ̂  (Kutterer 1999). However, 
some care is needed when scaling the VCM used in the 
comparison. In this contribution, we will focus on three 

versions of Q̂ :   2

_
ˆ ˆ ˆ, ,

MCMC MC diag scaleddiag Q Q Q I . 

The matrix ˆ
MCQ  accounts both for the 

heteroscedasticity of the observations and the 
mathematical correlations and has a block diagonal 

structure. _
ˆ

MC diagQ  contains only the diagonal 

elements of ˆ
MCQ , i.e. the correlations are neglected. 

2

scaled I  is a scaled version of the identity matrix. 

2

scaled  is determined by taking the mean of the 

diagonal elements of _
ˆ

MC diagQ  over all points. The 

scaling is necessary for the sake of comparison between 
matrices as the VCM is only involved once in Eq. (9). 
Obtaining similar results with all three matrices would 
indicate that a simplification with an easy to handle 
identity matrix can be considered under the uncertainty 
model chosen. When dealing with deformations, we 
prefer an inadequate acceptance of the alternative 

hypothesis 
1

H . As the surfaces under consideration in 

the following case study are small, we do not carry out 
local congruency tests on specific points, which would 



4th Joint International Symposium on Deformation Monitoring (JISDM), 15-17 May 2019, Athens, Greece 
 

have further the disadvantage of being more strongly 
influenced by small variations of the estimated surfaces 
due to the stochastic model, making comparisons of the 
test statistics difficult in view of their strong variability. 

 

III. CASE STUDY 

A. Description of the data set 

In this section, we use a real data set of an historic 
masonry arch bridge over the river Aller near Verden in 
Germany to compare the results of the test statistics for 
detecting deformation at the level of the B-spline 
approximation. The TLS observations stem from an 
experiment carried out in the framework of the 
interdisciplinary project “Application of life cycle 
concepts to civil engineering structures” (Schacht et al. 
2017). In order to simulate the deformation, loads of 
increasing weights were artificially added on specific 
parts of the bridge to simulate the impact induced, e.g., 
by car traffic. 2D profiles were captured using a 
Zoller+Fröhlich Imager 5006H at a sampling rate of 
500,000 points per second. Objects such as prisms were 
removed from the obtained data set. After a data gap 
handling and a projection of the 3D point cloud onto a 
regular grid, the B-spline approximation of the arch 
bridge was performed.  

Using a specific software (CloudCompare), six 
surfaces were selected for deformation analysis. Their 
surface area is approximately 0.05 m2. The grid size was 
chosen such that for all cases 300 +/-25 points were 
taken into account. Their localisation on the complete 
bridge and their identification number are shown in 
Figure 2. Four epochs were considered for further 
analysis: the first one corresponds to the reference (no 
load), whereas the fourth one corresponds to the 
maximum load, i.e. maximum deformation. As the 
weights were applied to the middle of the bridge, we 
expect zones 1-3 to be more influenced by the loading 
than zones 4-6, which are situated near the extremity 
of the bridge on the right side (see Table 1, last row). 

 

 
Figure 2. top: historic bridge and bottom: representation 

in CloudCompare with position of the six surfaces under 
consideration for deformation analysis (from Paffenholz et 

al. 2018) 
 

B. Results 

We performed an approximation of the surfaces 
using B-splines as presented in Section II. The optimal 
number of CP was fixed by means of the BIC and AIC, 
which agreed to an optimal number of 9 CP, i.e., 3 CP in 
each direction. The global test was carried out to check 
for misspecification in each case under consideration. 
The mean raw intensity values were integrated in the 
stochastic model (3) to compute the range variances. 
Table 1 summarizes the mean properties of the 
different surfaces, including the scanning geometry. In 

Table 1, we additionally give Δ̂ , which is the Euclidian 

norm of the estimated surface differences in [m] with 
respect to the reference to assess the amplitude of the 
expected deformation for the 4 cases, i.e. between 
epoch 0-1, 0-2, 0-3 and 0-4, where 0 corresponds to the 
reference epoch (no deformation).  

 
Zone 1 2  3  4 5 6 

HA [°] 1.5-3 2.2-4 4.3-
10.6 

100.6-
101.7 

102.9-
104.1 

106-
107.7 

VA [°] 110-
111 

119-
120 

146.6-
150 

318.6-
321 

309-
311 

287.5-
290 

Range 
[m] 

8.9-
9.1 

6.4-
6.6 

3.79-
3.95 

10.8-
11.2 

9.2-
9.5 

7.5-
7.8 

̂  

0-1 
0-2 
0-3 
0-4 

 
 

0.051 
0.093 
0.145 
0.198 

 
 

0.034 
0.065 
0.101 
0.140 

 
 

0.015 
0.025 
0.042 
0.054 

 
 

0.018 
0.021 
0.017 
0.021 

 
 

0.016 
0.014 
0.017 
0.021 

 
 

0.009 
0.007 
0.008 
0.008 

Table 1: properties of the six surfaces 
 

The quantile of the tests depends on the parameter 

  chosen, which is thus the decision of the user. In 

this contribution, we focus on the behaviour of aprioriT  

when the VCM of the observations is varied. As 

aposterioriT  led to the same conclusions, we do not 

present the corresponding results for the sake of 

shortness. The corresponding results for aprioriT  for the 

six surfaces under consideration (Figure 2) are 
presented in Figure 3 (left) and (right) for the four 
deformation scenarios. 

 

 

Figure 3. aprioriT  for the six surfaces: left zone 1-3 and 

right zone 4-6. Four deformation scenarios corresponding to 
an increased magnitude are named Def01, Def02, Def 03 and 

Def04 for “Deformation between epoch 0 and 4”. 
 

From Figure 3, a clear difference can be identified 
regarding the impact of neglecting mathematical 

TLS 



4th Joint International Symposium on Deformation Monitoring (JISDM), 15-17 May 2019, Athens, Greece 
 

correlations (blue and yellow lines). For the first three 
surfaces where a strong deformation occurs, the 

differences between aprioriT  computed with ˆ
MCQ , 

_
ˆ

MC diagQ  are negligible for all deformation cases. 

Exemplarily, for zone 3, it reaches the value of 3 for 

Def01 and 25 for Def04. Because aprioriT  is far below 

the critical value for 0.05  , this small difference has 

no impact on the rejection of the null hypothesis. By 
comparing the angle and range values of Table 1 for 
zone 1-3 with Figure 2, we additionally point out that 
the geometry of the scans correspond to cases where 

the ratio 
X

R  was far under 1. For these specific 

configurations, the mathematical correlations can thus 
be neglected. The scaled identity matrix is a possible 
alternative, although it would lead here to an 

overestimation of aprioriT  because of the 

aforementioned small influence of the mathematical 
correlations. The overestimation remains better than 
an underestimation, i.e. the non-detection of 
deformation. However, for the zones 4-6, which are 
much less strongly impacted by the loading (Table 2) 
than zones 1-3, the impact of the scaled identity and 

_
ˆ

MC diagQ  on aprioriT  is slightly different. Differences 

between aprioriT  for ˆ
MCQ  and _

ˆ
MC diagQ  of up to 70 

can be obtained, which could be, with regard to the 
small deformation, critical. Indeed, the approximated 

matrices lead to an underestimation of aprioriT . The 

reason for this behaviour is related both (i) to the small 
deformation magnitude under consideration, as well as 
(ii) to the unfavourable scanning geometry. Because 

HA  and VA  reach the values of approximately 100° 

and 300°, a deeper analysis of Figure 1 (top) highlights 

a strong increase of the ratio 
X

R . Additionally, the 

range is larger and the intensity values lower due to the 

scanning condition, so that 
X

R  tends to be comparable 

to the shape found in Figure 1 (bottom). Consequently, 
mathematical correlations should not be neglected 
under unfavourable scanning geometries.  

For scanned objects with mean HA  and VA  between 

20° and 80°, mathematical correlations can be 
neglected due to averaging effects, and a simplified 
stochastic model can be used. The same holds true 
when deformation are large. However, when extremely 
small deformations are suspected (under 1 mm), the 
most accurate VCM should be preferred so that the 
congruency test can reach its optimal efficiency.  

 

IV. CONCLUSIONS 

The detection of deformation from TLS observations 
can be done either at the point cloud level or at the level 
of an approximated surface. This geometry-based 

strategy compares approximated analytic functions, i.e. 
cylinder, planes or free-form curves from different 
epochs. The B-spline surface approximation has been 
shown to provide a good balance between complexity 
and accuracy, and is increasingly used to model objects 
scanned by TLS. An LS adjustment is performed to 
determine the coordinates of CP that determine the 
shape of the final surfaces. To reach the best efficiency 
of the LS estimator, the weighting with the true VCM of 
the observations is indispensable. The 
heteroscedasticity of TLS range measurements can be 
modelled based on the SNR or equivalently intensity 
values, and depends thus on the scanned objects and 
the geometry. Angles are assumed to have a constant 
variance taken from the manufacturer’s datasheet. As 
B-spline approximations have to be performed with 
Cartesian coordinates, a transformation of the VCM is 
needed to account for mathematical correlations. Since 
a resulting fully populated VCM is less easy to handle 
than a diagonal VCM, we investigated in which cases 
such correlations can be neglected. It could be shown 
exemplarily that the magnitude of the cross diagonal 
elements of the VCM of the transformed observations 
in comparison to the diagonal elements increases under 
unfavourable geometries, i.e. mostly for small 
horizontal and vertical angles, angles close to 90°, and 
higher ranges. A case study corresponding to a 
deformed bridge under loading confirmed this 
dependency by analysing the value of an adapted 
version of the congruency test statistic for 
approximated surfaces to detect deformations. We 
have shown that for small deformations under 
unfavourable geometries, neglecting mathematical 
correlations should be avoided, i.e. differences around 
30-50 for the a priori test statistics were found. For 
larger objects with an average geometry, either a scaled 
identity matrix or the diagonal version of the fully 
populated VCM accounting for mathematical 
correlations can be used. However, this simplification is 
to be taken with caution, particularly when the 
estimated standard deviation of the range increases 
with respect to the one chosen for the angles. In this 
contribution, we focused on mathematical correlations. 
The conclusions are similar for other sensors which 
measurements are made in polar coordinates and the 
post processing implies a coordinate transformation. 
The impact of additional temporal correlations remains 
to be further studied since their structure will similarly 
affect the test statistics, see Kermarrec et al. (2019) for 
a parallel between the expected correlations of TLS and 
GNSS range observations. 
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