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ABSTRACT 
The integration of areal monitoring techniques such as terrestrial laser scanning (TLS) and the numerical 

simulation of complex structures is a challenge in the context of structural health monitoring (SHM). Key aspects 
to facilitate this integration are the thorough handling and modelling of the uncertainties of both measurement 
and numeric model, and the quantification of the attainable accuracy of the investigated structural parameters 
depending on the setup configuration. 

We give a detailed explanation of an algorithm that integrates the contactless areal monitoring of the surface 
of a structure and the numerical determination of its material parameters with a finite element (FE) model. The 
FE mesh is generated automatically from a point cloud acquired using TLS, while the best linear unbiased 
estimates of unknown material parameters are calculated by matching the displacements predicted with the FE 
model to the ones derived from laser scans taken at different epochs. 
In this contribution, we refine a previously introduced algorithm by (i) explicitly linking the scanned points to the 
FE mesh, and (ii) taking into account a spatial distribution of uncertainties of the point clouds. Furthermore, we 
use a closed-loop simulation to study the performance of the algorithm for the case of a simply-supported 
horizontal beam loaded at midspan and the sensitivity of the results with respect to the scanner location. 

 
I. INTRODUCTION 

In the realm of structural engineering, terrestrial laser 
scanning (TLS) is now a technique employed for a 
variety of tasks such as condition assessment (Mukupa 
et al., 2017), dimensional control (Kim et al., 2016), 
automatic  generation of models in connection with 
building information modelling (BIM) (Jung et al., 2015, 
Brumana et al., 2018), damage inspection (Sánchez-
Rodríguez et al., 2018), deformation monitoring (Sarti 
et al., 2009, Holst et al. 2019), and forward modelling 
(Bitelli et al., 2018). However, the problem of numerical 
identification by integrating TLS and finite elements (FE) 
analysis has not been deeply researched yet, despite its 
potential in the context of structural health monitoring 
(SHM). Contributions in this regard have been provided 
by Wu et al. (2016), Lee et al. (2013), Yang et al. (2018), 
and by Riveiro et al. (2018). The latter three defined 
methods to analyse exclusively bent beams. 

We have previously published an algorithm (Serantoni 
et al., 2018) that combines the contactless areal 
monitoring of a free-form deformable structure and the 
numerical identification of its mechanical parameters, 
in the framework of an integrated deformation analysis 
(Lienhart, 2007).  In this paper we present the equations 
relating the laser scanning observations to the FE 
model, and address the following questions: which 
accuracies can be attained? How does the accuracy 
depend on scanner location and scan resolution? Which 

are the smallest displacements that the algorithm can 
correctly process as input?  

Chapter 2 contains a concise description of the 
algorithm. The assessment of the performance of the 
algorithm for scans acquired from different standpoints 
is given in chapter 3, as well as a study on the effects of 
the numerical errors for very small magnitudes of the 
observation noise. As exemplary application case, we 
use a bent beam although the applicability of the 
method is not restricted to this simple case. 

 
II. METHOD 

A. Outline 

In the framework of an integrated deformation 
analysis, we have developed a parametric static "white 
box" model (Welsch & Heunecke, 2001), by merging FE 
analysis and TLS deformation monitoring. In fact, the FE 
analysis is a practical and flexible framework to include 
and integrate measurements from different sensors 
(Jäger, 2014; Lienhart, 2007). More specifically, in this 
contribution we focus on a specific identification 
problem, the determination of material parameters of 
an elastic object when the applied loads and the 
resulting deformation are known or have been 
measured. The flowchart of our algorithm is sketched in 
figure 1. 
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B. FE modelling 

When dealing with recently built structures, the FE 
mesh can often be created from a computer-aided 
design (CAD) model that is available from the design 
phase. Extensive work on this topic is available in the 
literature (e.g. Foucault et al., 2008; Thakur et al., 2009; 
Gujarathi & Ma, 2010), and the major FE analysis 
software packages (e.g. Abaqus, Ansys, LS-Dyna, 
Nastran) already include import tools for CAD 
geometries. This also holds if the real geometry differs 
significantly from the CAD model and it is necessary to 
update it. Conversely, if no prior geometric model is 
available e.g. for historical structures, the reference 
point cloud acquired before the deformation can be 
used to automatically generate a FE mesh of the 
investigated structure. In this paper, we followed this 
second approach, by converting the reference point 
cloud into a FE mesh of 3D elements without employing 
any CAD software package. We chose to use C3D8 linear 
bricks because they permit a very straightforward 
meshing when modelling composite structures made of 
layers of different materials (Serantoni et al., 2018). The 
size of the finite elements, and thus their number, has 
to be determined for each individual application case, 
finding a trade-off between the desired level of detail 
and the available computational power. Engineering 
judgement is particularly important in this stage. For 
example, when modelling bending members, the size of 
the finite elements must be small enough to 
approximate the stress distribution across the cross 
section. In this contribution we assume the boundary 
conditions (i.e. loads and constraints) to be known, 
while the a-priori knowledge of the initial parameters 
to be estimated can be very rough. 

 
C. Point cloud acquisition 

The analysis is based on point clouds from two 
epochs. Herein we assume that a change of loads and 
thus a potential deformation have occurred between 
these epochs. We therefore denote the state of the 
object at the first epoch as "reference state" and at the 
second epoch as "deformed state" (see figure 1). We 
also assume that the point clouds are acquired using 
TLS and we choose a stochastic model accordingly. 
Actually, the modelling of the variance-covariance 
matrix (VCM) of TLS point clouds is an open research 
topic (see e.g. Kauker & Schwieger, 2017) because of 
the manifold types of errors involved. However, for the 
sake of simplicity and because we primarily focus on the 
identification method rather than on the concrete 
values of the parameters and uncertainties, we model 
only the instrumental, non-correlating errors, i.e. the 
angular and range uncertainties of the scanning unit. 
Moreover, the range accuracy has been assumed to 
degrade proportionally to the cosine of the incidence 
angle, as proposed by Soudarissanane (2016). Thus, we 
use the following model for calculating the standard 
deviation of the range for each scanned point 

 / cosd ρσ σ α=  , (1) 

where dσ  is the standard deviation of the measured 
distance, ρσ  is the smallest standard deviation, which 
is obtained if the laser beam hits the surface 
orthogonally, and α  is the incidence angle of the laser 
beam. 

Additionally, the points are assumed to be 
uncorrelated and the point clouds are assumed to 
contain no residual deviations from registration errors 
(e.g. resulting from mixed pixels). If in a real application 

Figure 1. The flowchart of the proposed method. 
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such deviations or errors cannot be ruled out, the point 
cloud should be carefully checked and filtered in a pre-
processing step. 
 
D. Displacements and their variances 

The deformation of the scanned structure as 
measured using the laser scanner needs to be related 
to the displacement of the FE-nodes predicted by the FE 
analysis. While the point cloud resulting from a scan 
represents the surface, it is usually not possible to 
directly relate the individual points of the point cloud to 
individual physical points on the surface. Thus we 
propose herein to use the point clouds to calculate the 
out-of-surface deformation components, i.e. the 
apparent surface changes perpendicular to the surface 
at the reference epoch. The approach is thus most 
sensitive to deformations which actually occur in that 
direction, e.g. vertical deformation of a horizontal beam 
loaded on top and scanned from below. While Lienhart 
(2007) chose to match the predicted and the measured 
changes in the space of the measurements, we followed 
the choice of Jäger (2014), who opted for the opposite, 
namely matching them in the space of nodal 
displacements. This avoids a computationally costly ray-
tracing within each iteration of the least-squares 
adjustment (LSA) explained in section II.E. 

If the point cloud is very dense as compared to the size 
of the finite elements, it might be sufficient to calculate 
for each node of the FE mesh just the average of the 
measured perpendicular displacements of the points in 
its neighbourhood, together with its associated 
empirical standard deviation. If instead the distribution 
of the scanned points is very sparse, i.e. if the average 
distance between points of the point cloud is greater 
than about 10% of the size of the finite elements, some 
more advanced interpolation is necessary. So, the 
displacement of the surface nodes of the FE mesh along 
the respective surface normal need to be interpolated 
from the point clouds. In the example later treated 
herein, we assume that the surface curvature is 
negligible as far as the definition of these surface 
normals is concerned, and that the normals over the 
entire analysed surface area are approximately parallel 
to the z-axis of the coordinate system. We can therefore 
simplify the interpolation of the node-wise 
perpendicular displacements by projecting the scanned 
points onto the surface of the reference FE model along 
the z-axis. The lengths of these projections can then be 
used as the measured values of the signal to be 
interpolated. 

We have herein chosen to employ a linear triangular 
interpolation relying on a Delaunay triangulation 
(Amidror, 2002). Each interpolated displacement Nδ  in 
correspondence of the FE node N  is a weighted 
average of the z coordinates of the three points , ,A B C  
of the point cloud, which form the triangle of the 
Delaunay triangulation where the node N  is projected 
as 'N . The weights are the three normalized areal 

coordinates of the point 'N within the triangle ABC , 
according to the following formula: 

' ' ' ,( , )N CA
B

N BC N AB
N A N

ABC ABC A
C

B
N

C
N

A A A
z z z x

A A A
yδ δ= + + = x  

  , , , , , , , ][ , ,A A A B B
T

B C C Cx y z x y z x y z=x ,  (2) 

where e.g. ABCA denotes the area of the triangle 
ABC (see figure 2). 
In case of very sparse data and long slim triangles 

located at the boundaries of the convex hull of the 
supporting points, this interpolant tends to 
underestimate the displacement field of bulging 
surfaces, and vice-versa (Franke, 1982). For accuracy 
reasons and to circumvent this effect, we avoid 
extrapolation by excluding from the analysis the FE 
nodes lying outside the convex hull of the projection of 
the point cloud onto the FE surface. 

Along with the scalar displacements, their variances 
need to be calculated because they are successively 
employed in the stochastic model of the parameter 
estimation. For this purpose, the VCM of the 
interpolated points have to be calculated along with 
their coordinates. The most rigorous approach to 
address such a task is the classic variance propagation 
starting with the full VCM of the given observations 
(here the coordinates of the points within the point 
cloud, after registration to the FE model), including all 
the correlations among them. However, this solution 
may be too computationally expensive if the 
interpolation function is not local and the numerical 
derivatives required for the variance propagation 
cannot be derived analytically. In this case numerical 
differentiation with respect to each of the three 
coordinates of thousands of points may be necessary 
when processing the point cloud data. Among the 
alternatives, also the widespread method of Kriging 
suffers from the disadvantage of being a "global" 
method, i.e. the interpolant depends on all the data 
points (Franke, 1982).  

In the interpolation chosen herein (see equation 1) 
the variance propagation can be performed analytically 
by derivation of Nδ with respect to all the parameters of 
the vector x , which contains only the coordinates of the 

Figure 2. A schematic representation of the linear 
triangular interpolation. In black, the FE mesh and its 

nodes; in red, the measured point cloud and the points' 
error ellipsoids; in blue, the interpolating triangulation; in 

green, an interpolated point and the calculated 
distance . 
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vertices of a single triangle of the Delaunay 
triangulation: 

  2
N

T
N N

ABCδ
δ δ

σ
∂ ∂   = ⋅ ⋅   ∂ ∂   

Σ
x x

 , (3) 

where ABCΣ is a 9x9 VCM including the three VCM of 
the vertices of the triangle ABC : 

  
A

BABC

C

 
 
 
  

Σ 0 0
Σ = 0 Σ 0

0 0 Σ
  (4) 

Hereby, we are neglecting the correlation which may 
occur between interpolated displacements if the 
respective triangles share one, two or three points, and 
we neglect the correlations between the coordinates of 
the triangle's points. Both are simplifications which may 
be dropped later in case (i) valid and numerically 
tractable correlation models of the coordinates in a 
point cloud become available, and (ii) it turns out that 
taking into account the correlations is necessary for 
practically useful results. 

Other computationally less demanding alternatives 
are methods based on averaging several positive-
semidefinite tensors. Such methods have been 
developed especially in the field of diffusion tensor 
imaging for medical applications (e.g. Hotz et al., 2010; 
Pusz & Woronowicz, 1975), and a review on them is 
given by Yang et al. (2012). Among them, we propose 
the log-Euclidean interpolation as presented by Arsigny 
et al. (2007) because of its particular simplicity and the 
absence of the Euclidean swelling effect. The latter can 
be intuitively described as follows: when averaging two 
symmetric positive-definite matrices, the determinant 
of the result turns out to be larger than the ones of the 
original two matrices. More precisely, the log-Euclidean 
interpolation consists of a weighted average Σ  of 
VCMs, according to the following formula, 

 
1

exp ln( )
N

i
iw

=

 
=  

 
∑ iΣ Σ , (5) 

where the weights iw  are suitably chosen weights, e.g. 
the normalized areal coordinates shown in formula (1). 
The natural logarithm of the VCM Σ  is obtained by 
extracting the natural logarithm of each eigenvalue ijd  
and successively recomposing the positive-semidefinite 
matrix as follows: 

 T= ⋅ ⋅Σ B D B  (6) 

 
ln( )

0
i j
i j
=

=  ≠
ij

ij

d
d

if 
if 

 (7) 

 ln( ) T= ⋅ ⋅B D BΣ   (8) 

Here B  is the square matrix of the eigenvectors, while
D and D are diagonal matrices of eigenvalues. 
The variances 2

Nδ
σ  of the interpolated perpendicular 

distances are then calculated according to 
 2

N

T
δσ = ⋅ ⋅n Σ n  , (9) 

where n  is the unit vector in the direction of 
displacement. The result we obtain with this approach 

is an approximation of the set of VCMs that we would 
expect if the scanned points would coincide with the 
projections of the FE nodes onto the interpolated 
surface. 
 
E. Parameter estimation 

The core of the algorithm is the iterative match of the 
measured and the predicted nodal displacements. The 
matching is conducted with an ordinary Gauss-Markov 
LSA that finds the best linear unbiased estimator of the 
sought material properties, according to the following 
formulas. 

 1( )−= T Tξ A PA A Py   (10) 

 2 1
0 ( )σ −= T

ξξ
Σ A PA
 

  (11) 

 2 -1
0σ
−= yyP Σ   (12) 

Here, A  is the design matrix and it contains the 
numerical derivatives of the nodal displacements with 

respect to the sought material parameters ξ , P  is the 

weight matrix, 2
0σ  is the a-priori variance factor, yyΣ  

and 
ξξ

Σ
 

 are the VCMs of the measured nodal 

displacements and of the estimated parameters, 
respectively. yyΣ is herein assumed to be diagonal and 

contains the variances 2
Nδ

σ  of the displacements, 

according to the methods shown in the section II.D., 
while the vector y  represents the observed 
displacements Nδ . 

At the present stage, this adjustment is not a fully 
integrated monitoring method, because the 
measurements are retrieved from a single 
measurement unit, and the boundary conditions are 
assumed perfectly known. However, this represent a 
preparatory study to fully integrate TLS measurements 
in the framework of integrated monitoring. 

 
III. NUMERICAL STUDY 

In order to demonstrate the method presented herein 
and to show how it can be used for a configuration 
assessment similar to the one carried out as part of the 
preanalysis of geodetic network, we created a closed-
loop numerical simulation tool. It comprises the 
generation of synthetic TLS point clouds from an FE 
model of a structure, assumed loads and an assumed 
location of the scanner. These point clouds are then 
processed together with an FE model only 
approximately equal to the one used for point cloud 
generation. The resulting material parameters, e.g. 
Young's moduli Ê , and their standard deviations Êσ  
are then compared to the ground truth values. We 
chose to conduct simulations instead of real 
measurements in order to better control the boundary 
conditions and the observation noise levels, to have 
nearly arbitrary flexibility regarding shape and material 
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properties of the object, and to know the ground truth 
for assessing the accuracy. 

 
A. Experimental setup for a single sensor location 

The application example presented herein has been 
designed with the following requirements in mind: (i) 
maximum displacements larger than the accuracy 
typically achieved with a terrestrial laser scanner over 
distances of a few meters (ca. 2-5 mm), (ii) compliance 
with the assumption of linear elastic material avoiding 
local plasticity effects (e.g. cracks, plastic hinges) by 
keeping the stress below the yield point in the whole 
structure, (iii) easy reproducibility in a lab, in case of 
future real experiments. Therefore, we modelled a 2 m 
long, simply supported flat bar ( 0E = 210 GPa, Poisson 
ratio = 0, density = 7850 kg/m3), with a cross section 
150 mm wide and 25 mm high. The self-weight of the 
bar is taken into account. The bar is subject to a three-
point flexural test without torsion, and the vertical load 
at mid-span (4 kN, marked as F in figure 3) has been 
distributed over the whole cross section, in order to 
minimise local deformation effects and to approximate 
the ideal case of a simply-supported slender beam. In 
this way, we could better validate the results. 

The simulated scans have a resolution in both azimuth 
and elevation angle of 0.6 gon and cover the extrados 
of the beam, i.e. the bottom surface, where the 
longitudinal fibres experience traction. We do not 
create and process simulated scan data of the sides of 
the beam because there would be almost exclusively in-
plane displacement of surface points for these sides, 
and the laser scan is not sensitive with respect to them. 
As for the standard deviations of the measurements, we 
assumed the arbitrary but realistic values of 0.5 mgon 
for all angles, and of 2 mm for ρσ , according to equation 
(1). For this analysis the coordinate system has been 
defined such that the centre of the beam extrados lies 
in the point (0, 0, 2.5), the y-axis is parallel to the long 

edge of the beam, and the xy-plane is parallel to the 
bottom and top surface of the beam (see figure 3). 

As first experiment, we estimated E  using 100 
synthetic point clouds acquired for the scanner location 
(0, 0, 0) with random azimuthal orientation. We 
obtained an average Ê  of 210.71 GPa, which deviates 
only 0.3% from the ground truth; the empirical standard 
deviation of the 100 samples is 3.4 GPa. The estimated 
standard deviation Êσ , obtained directly from the LSA, 
is smaller by a factor of 4-7 for most realizations, 
indicating that the simplified variance propagation 
discussed above may have to be revisited. 

 
B. Multiple sensor locations 

We have repeated the estimation of E  for several 
sensor locations in the vicinity of the beam. As the beam 
and the applied forces have two perpendicular axes of 
symmetry parallel to the xy plane, only scanner 
locations belonging to a  single quadrant have actually 
been simulated, concretely 64 locations forming a non-
regular 8x8 grid (see dots in figure 4), which lies on a 
horizontal plane 2.5 m below the extrados of the beam. 

The outcomes of the simulations by using the variance 
propagation illustrated with formula (3) show that 
standpoints farther than 8 m deliver a strong bias 
because of the small number of scanned points still 
covering the extrados (less than 25). Moreover, in these 
areas, our approach generally overestimates Ê  
because of an underestimation of the nodal 
displacements due to the sparse data and the linear 
interpolation method (see section II.D.). 

In order to compare the two presented methods for 
the interpolation of VCMs, we show the respective 
results on a smaller area of 4x4 m2 (figure 5). We 
observe that the results obtained using the log-

Figure 3. Sketch of the experimental setup, including the 
system of coordinates (in blue) and the sensor location (in 

red). The sketch is not drawn to scale. 

Figure 4. Deviation of the estimated value  as percent 
ratio of the ground truth . The scanned beam is outlined in 
blue and the black dots represent the simulated standpoints, 

while the colours are interpolated between them. 
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Euclidean method are smoother than the ones obtained 
with the simplified variance propagation, with a 
maximum bias of 7.6% (figure 5b) and 20.0% (figure 5a), 
respectively. A possible reason could be the effect of 
observation noise in the computation of the partial 
derivatives for the variance propagation-based 
approach. However, this hypothesis should be 
supported by future detailed investigations. 

Moreover, as figures 5c and 5d show, the predicted 
standard deviation Êσ  is less than 1% of 0E  for all 
scanner locations taken into account. This is much 
smaller than the biases shown in figures 5a and 5b, 
indicating that the biases are not negligible. Bias and 
estimated uncertainty are apparently related, as the 
contour lines in figures 5a and 5c, and 5b and 5d 
respectively show. Not surprisingly, the standpoints 
aligned with the longitudinal axis of the beam are the 
ones delivering the most unstable results. For these 
points a small change of configuration can cause a large 
change in the amount of scanned points on the bottom 
surface of the beam. In fact, at a large distance, apart 
from the problems caused by an unfavorable angle of 

incidence, only one row of scanned points might be on 
that surface. 

The comparison with similar analyses conducted by 
other authors is difficult because of the different 
experimental setups. However, we encounter biases on 
Ê  larger than 13.3%, as obtained e.g. in Riveiro et al. 
(2018), who also analysed the identification of E  for a 
loaded horizontal beam. Future work will have to 
identify whether our approach really yields higher 
accuracy (and if so, how much of it is due to the 
assumption of known boundary conditions) or whether 
the predicted accuracy of our approach is too 
optimistic.  
 
C. Influence of numerical errors 

A separate brief analysis for numerical stability 
showed that the algorithm and the LSA work properly 
for standard deviations of the coordinates within the 
point clouds of 0.01 mm. For smaller noise levels the 
standard deviations of the solution are dominated by 
quantization errors of the input data. If a scanner of 
such high precision were available, the Young modulus 
could be determined with a bias below 0.2% and a 

Figure 5. Results of the simulation for multiple standpoints. a, c) deviation of the estimated value  from ; 

b, d) estimated standard deviation  of the Young modulus. Values expressed as percent ratios to the ground truth . 
The scanned beam is outlined in blue and the black dots represent the simulated standpoints, while the colours are 

interpolated between them. 

a) b) 

c) d) 

Simplified variance propagation Log-Euclidean interpolation of VCMs 
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standard deviation below 0.1 GPa using the case 
described in section III.A; this is a lower bound of the 
achievable precision with the current algorithm and 
current formats for data transfer between the various 
software components. 

 
IV. CONCLUSION AND OUTLOOK 

With this contribution we showed how we refined 
and tested our algorithm for numerical identification of 
material parameters of a structure using terrestrial 
laser scanning and finite element modelling. The core 
elements are the calculation of surface-deformations 
orthogonal to the surface from the laser scans, the 
interpolation of these deformations to the surface 
nodes of the finite element model (FEM), and the 
iterated adaptation of the parameters of the FEM until 
the discrepancies between the predicted node 
displacements and the measured ones match best in 
consideration of the VCM of the scanned points, and 
analysed the situation of Young's modulus estimated 
from a horizontal steal bar loaded at its centre. Using a 
closed-loop simulation and assuming the loads to be 
known at two epochs at which scans are made, we 
obtained a bias below 0.3% and a standard deviation of 
about 1.7% for Young's modulus, based on a set of scans 
from beneath the centre of the beam. 

Moreover, we analysed the impact of scanning 
location with respect to the beam and found that the 
precision and bias quickly degrade once the scanner 
moves away from beneath the bar. This degradation is 
due to increased scanning noise and decreasing number 
of points on the surface of the bar with increasing 
distance and angle of incidence. However, the analysis 
did not take into account systematic deviations of the 
scanning due to angle of incidence, surface roughness 
or similar effects; it is therefore to be expected that the 
results degrade even more with real scanning data than 
in our simulation. The presented analytical approach 
based on closed-loop simulation can be easily modified 
in order to assess the influence of other variable 
characteristics of the experimental setup e.g. scanner 
resolution or scanner accuracy. The scan-based 
identification can of course be extended to structures 
beyond beams, and by extending it to a full integrated 
analysis jointly estimating parameters, loads and 
deformation, can be a powerful tool for structural 
health monitoring. 
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