

Introduction

Defining a location – Stage A: Geodetic Datum (Reference System):

- > The physical infrastructure that serves as a referent for the calculation of other parameters;
- A geodetic datum is 'a set of constants specifying the coordinate systems used for geodetic control, i.e., for calculating coordinate of points on the earth' (Geodetic Gloassary, 1986);
- Eight quantities are needed (at least): origin (three), orientation (three) and reference ellipsoid (two);

FIG Working Week 2009, Eilat, Israel

Introduction

Defining a location – Stage B: Map Projection:

- ...'A systematic representation of a round-body surface (i.e., the earth) on a plane'... (Snyder 1987);
- All transformations from 3D to 2D surfaces include distortions;
- These types of distortions can be: area, shape, scale, and direction:
- Developable surfaces used as projections: cylindar (for example: mercator), cone (lambert), and plane;
- > Two main considerations:
 - o Orientation: normal, transverse, and oblique:
 - Tangent or secant;

FIG Working Week 2009, Eilat, Israel

3-8 May 2009

Introduction

Datum Transformation:

- Direct approach: utilzing formulated differential equations that relate to changes between two geodetic datums – and thus to variations affecting the geodetic coordiantes of a given point:
 - Changes in the position, semi-major axis and flattening are known;
 - Normaly, the axes of the reference ellipsoids are assumed to be parallel (no rotation angles are involved);
 - Several approximations are incorparated to simplify the transformation formulas:

FIG Working Week 2009, Eilat, Israel

Introduction Datum Transformation – cont.: Indirect approach: several transformation steps: Transforming the given (reference) coordinates into Cartesian geocentric ones (X, Y, Z), according to refernece ellipsoid; Applying 3D similarity transformation (compensating the change in position and the orientation of the two reference ellipsoids) to the geocentric coordinates; Transform the new target Cartesian gecentric coordinates into geodetic ones;

Problem Definition

Map(s) positioning:

- There exist a large number of datums and projections presenting locations given in numerous coordinate systems, while demanding simultaneous use in real-time geo-oriented systems;
- Transforming location-based data between two given coordinatesystems may be time consuming and might involve data uncertainty;
- Data-transformation is becoming more complicated involving dozens of sets of transformations – due to an increasing number of datums, adjustments, and coordinate systems being continuously updated;

FIG Working Week 2009, Eilat, Israel

3-8 May 200

Problem Resolving

Suggesting....

- Simplification of coordinate systems transformation, while enabling a faster process with no accuracy loss;
- A process that is not solely derived from the 'known' transformation model;
- Enabling to utilize higher degree of transformation model;
- Utilizing feature-based identification to extract transformation model (future research).

FIG Working Week 2009, Eilat, Israel

Proposed algorithm and processes

- Utilizing an N-dimensional geo-registration matrices:
 - Phase I pre-processing: establishing the geo-registration matrices
 - Dividing the entire area covered by both coordinate systems into a matrix composed of cells;
 - Executing an indirect transformation on all matrix-nodes;
 - Calculating the source-to-target coordinates differences stored as geo-registration matrices.
 - ⇒ Phase II the transformation
 - Locating grid-cell bounding the desired source coordinate needed for transformation;
 - Implementing designated interpolation concepts on the values stored in the geo-registration matrices;
 - Calculating the precise coordinate corrections (source-to-target).

FIG Working Week 2009, Eilat, Israel

3-8 May 200

Proposed algorithm and processes

Phase I – pre-processing:

 Dividing the entire area covered by both coordinate systems into a matrix composed of cells;

FIG Working Week 2009, Eilat, Israel

Proposed algorithm and processes

Phase II – exact transformation calculation:

 Calculating the precise coordinate corrections (source-to-target);

$$F_{1}(t) = -0.5 \cdot t + 1.0 \cdot t^{2} - 0.5 \cdot t^{3}$$

$$F_{2}(t) = +1.0 - 2.5 \cdot t^{2} + 1.5 \cdot t^{3}$$

$$F_{3}(t) = +0.5 \cdot t + 2.0 \cdot t^{2} - 1.5 \cdot t^{3}$$

$$F_{4}(t) = -0.5 \cdot t^{2} + 0.5 \cdot t^{3}$$

$$Z_{P} = \sum_{i=1}^{4} \sum_{j=1}^{4} F_{j}(x) \cdot F_{i}(y) \cdot H(i, j)$$

$$\left\{ dX, dY \right\}_{CALC}$$

$$\downarrow$$

$$\left\{ X, Y \right\}_{TARGET} = \left\{ X, Y \right\}_{SOURCE} + \left\{ dX, dY \right\}_{CALC}$$
3.8 May 200

$$\{X,Y\}_{TARGET} = \{X,Y\}_{SOURCE} + \{dX,dY\}_{CALC}$$

FIG Working Week 2009, Eilat, Israe

Case Study

- **Lambert Conformal conic and Transverse Mercator**;
- Varying scale but retain the correct shape of the mapped surface;
- Scale variation is greatest in north-south directions for Lambert, and the east-west directions for transverse Mercator;
- France was chosen for evaluating the proposed concept (UTM zones 31-33);
- France's Lambert datum is defined by Clarke 1880 ellipsoid, where the UTM datum is defined by WGS84 ellipsoid.

FIG Working Week 2009, Eilat, Israel

Case Study

Accuracy as function of grid resolution.

Diagonal difference [m]
5.65E-08
3.37E-07
5.58E-05
0.0005
0.006
0.0645
0.3846

FIG Working Week 2009, Eilat, Israel

Case Study

Main conclusions:

- > From a precision viewpoint:
 - ➤ For most geodetic purposes accuracy of less than 1 cm is sufficient accepted while utilizing a 25,000 m resolution.
 - ➤ For graphic purposes a resolution of 100,000 m is adequate.
- ➤ Usually, a small number of matrix cells is required in the preprocessing phase, i.e., a short process and small database storage is required – essential for hand-held devices;
- ➤ Though large variations exist in the geo-registration matrices cells, the interpolation concept was accurate enough and reliable to predict local trends exist;
- > Approx. 5 times faster than the indirect process significant when real-time (web-based) decision-making application is considered.

FIG Working Week 2009, Eilat, Israel

Summary

What has been achieved:

- ➤ Fully automatic process for calculating and modelling transformation parameters for a required location;
- ➤ A solution that is generic for any given sets of coordinate systems, datums and projections;
- ➤ An adaptive solution when other types of transformation model is implemented (other than translation only);
- > No algorithmic and calculation complexities.

FIG Working Week 2009, Eilat, Israel

3-8 May 2000

Summary

- > Future research:
 - Adding rotation parameters stored in the matrices and utilized in the transformation model;
 - When no transformation model (formulae) is known identifying counterpart unique entities that exist in both given maps, hence replacing the "known" indirect transformation model;
 - Establishing a non-gridded (matrix) geo-registration model.

FIG Working Week 2009, Eilat, Israel

