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SuomiNet (USA) and tomography
Helmert-Wolf blocking (HWb)
Fast Kalman processing using HWb

Estimating errors by C.R.Rao’s
MINQUE theory using HWb

Concluding remarks
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Verner E. Suomi [1915%-1995]

The International SuomiNet GPS sites:

SuomiMNet Sites
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The Local GPS Network in USA,
Oklahoma:
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GPS slant delays:




Volume Display of Satellite Ray Paths:

5 minutes of observations at 30
second epochs
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GPS-antenna on the roof-top of FMI:

Skyplot of SuomiNet SG40
GPS-residuals for a day:
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The national Virtual Reference
Station (VRS) network of dual-
frequency GPS receivers in
Finland:
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The Finnish
permanent GPS
network

(FinnRef):
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The GPS receiver developed from the
Finnish Vaisala radiosonde:

e iTrax03 is the size of a
stamp 26x26x4.7mm

* Ultra-low power
consumption

* Low cost

* Carrier-phase detection
of the GPS L1 signals for
precision applications

Computing the shape of Earth’s geoid led
already in 1880

to Helmert's

The joint regression equation system for all different
measurements is written in the Canonical Block-Angular
{CBA) form as follows:




Fastest precise computation was in
1978 given through

Wolf's analytic solution:
¢={Za\ R, G, ) 'ZG\R, ¥,

= (X, %) X 5y - G, ®)

¢ = vector of common adjustments
b, = vector of state parameter adjustments for block k

2 = summation where index k runs over all blocks of observations
G, = Tacobian matrix for the commen adjustments for block k

R = I-Xk(X'ka)'lX'k = residual operator for block k
X, = Jacobian matrix for the state parameters for block k
¥, = vector of the observations for block k; and,

where observation errors €, are orthonormal . Prof. Helmut \Wolf

The Semianalytic Inversion
by Frobenius 1845-1917:

Ferdinand Georg Frobenius

The sparse coefficient matrix to be inverted may often have either a bordered block- or band-diagonal

(BBD) structure. If it is band-diagonal it can be transformed into a block-diagonal form e.g. by means of a
generalised Canonical Correlation Analysis (gCCA). The large matrix can thus be most effectively
inverted in a blockwise manner by using the following analytic inversion formula:

A B]7' [A'+A'B(D-CA'B)'CA™ —-A"'B(D-CA'B)™!
¢ Dl = —(D - CA'B)'C4™? {D<CAB)

of Frobenius where
4= a large block- or band-diagonal {(BD) matrix to be easily inverted, and,
(D—C4~ !B) = a much smaller matrix called the Schur complement of 4.

This is the FKF method that may make it computationally possible to estimate a much larger number of
state and calibration parameters than an ordinary Kalman recursion can do. Their operational accuracies
may also be reliably estimated from the theory of Minimum-Morm Quadratic Unbiased Estimation
(MINQUE) of C. R. Rao (1920- ) and used for controlling the stability of optimal Kalman filtering.




Error covariances of the Helmert-Wolf blocking
(HWb) method were in 1982 given through

Lange's Precision Matrix (LPM):

Error variances and covariances of all the estimated
parameters and unknowns & =[b , B J,..., b, €' "' are
given by the following large matrix:

Cov(§ —E(§}))
¢;+DSD,' DDy - DSDy' -D;S
D,SD," C;+D,8D, -~ D,SDy’

Cy + DgSDg' -
-SDy’

DSD,'
-SDy'

DSD,'
-SD;’

Prof. Issai Schur
1875-1941

K
where 8 = { 2 Gy Ry Gy}l and,
k=1

fork=1,2,..  K:
Cp = (X %)
D= (X X 11X Gy
Ry =1 — X (30! X)) 13

Best Unbiased Estimation
of accuracies of correlated
observations was solved in
1970 by C.R.Rao’s
MINQUE theory that can
now exploit internal
consistencies of the GPS
data in optimal fashion:

Calyampudi B. Rao
Professor of Statistics




Fastest possible computation of the Minimum
Norm Quadratic Unbiased Estimates
(MINQUE) :

vector -{'Gzi}= [631 N ('523 . (-;2“]1': F-! q In case of
uncorrelated

measurements of a

where

. . scalar variable this
n = number of observed carrier-phases

MINQUE solution
q- vector {qi}— vector :.\‘T }{']_—'1 .\} would collapse into
. - . - e the simple formula

P = v FF .. L= s St ’ a

F = matrix {f';;} = matrix {tr R'T; RT}} for computing the

T, = diagonal matrix (8%, 8%, ..., %) error varlance of
_ N ) mean: o%/n

N = total number of all observations

R=I-x G, |[ci+DsDT  DsSp,T . DSDET  -DS|[x, G
X3 Ga D,SD;T  Cy+DySDT - D,SDgT -D4S X2 Ga
Xk Gk || DgSDT DSD,T Cy + DDy’ -DgS Xk Gk
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Optimal Kalman Filtering:

Rudolf E. Kalman, 1930 -

Observations Equation:
y.=H;s,+F¢c +e fort=1,2,.

System Equation:
s,=A;s; +Bu  +F,¢c +a fort=1,2,..

where ¢, = the vector representing all those
calibration and system errors that are
constant over some epochs t.

10



Stability of Kalman Filtering:

s, and ¢, must be observable

u, must be controllable

e, and a, must neither auto- nor cross-correlate!

» These correlations are factored using the
matrices FY, and Fs, with help of Singular
Value Decomposition (SVD) or generalized
Canonical Correlation Analysis (gCCA).

Decorrelating the error variances of the

Observations and the System:
“Augmented Model for a moving time volame (length L):

[ - Tt Hy: ipg 5t [ &
As,  +Bu = I iF{ Sio1 [ F|ASe78¢) -8,
e - :
NIRRT Hip! Fe | A %1
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t-1 L J L t
(18)
ie. Zt - Zl St + €,

MWMevmorC‘mmsemsaﬂthosecaﬁbmﬁonpammthatm
constants in the moving volume. As previously, we proceed with

x -1
Updating: § = {ZVIZ) 2V, a9
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The Observation Equation for a moving data-window of length L. is obtained for the
carrier-phase measurement gy i, of a receiver as follows:

Yigdad ™ Pigna= Puse™ Tt Bliewe Hhiggedt ey U]

The locally for i=1,2,...,m, j=1,2....,0, k=12,... K, [=0,1,2,...,.L-1 and t=L,L+1L42,.. o
l. . d where y = difference of the total carrier-phases between the j™ men.mmmw receiver
i=index of the signals (L1,1.2,13,... ,G1,... ,El,... e
lnearlze j = index of the satellites (GPS, Glonass andGahleo m)
Ob t. k=indnnfmemeivm(orre\:¢i\'er§ms)
1 = local index of epochs for a moving data window of length L at epoch t
serva lons t = index of the epoch times (1=1,2,3,...)
d S = total phase of the reconstructed carrier of the i sugmlutepwlltk*
propagation distance [phase] in dry Emmthe_] satellite to the k™ receiver at cpoch t
an YStem 5-—:Iuckwr[r:;mefmek rcmwrur:nhl poe
. = clock correction of the |* satellite at epoch t
£ = vector of the slant-path 3WV refractivity values of pixel volumes from the j* satellite
Equatlons to the k™ receiver at epoch t (see Slant-delay models on pages 39-49 of Kleijer (2004))
w = vector of the 3WV values of pixel volumes at epo:ht

L3
h = slant ing of the TEC refractivity for the i signal from the | satellite
Wlth to the receiver network(s) at epoch t
¢ = the TEC value of the receiver network(s) at epoch t
= rand t error at epoch 1; and,
tomography 7ot i U S —
Th fi Equatio follows:
lOOk as ere are four System Eq ns as follows: an
Tip= Taptone
D A
follows: e (e dhgwers v
a=out by
where

L Mje, veand &, = the random walk terms; respectively

Wy = VECtor [Wi s, Wa..., Wiy

vy veetor [V Ve Vvl

Ay state ition matrix describi Ivection of the 3WV values in the air-mass
dA,= matrix of the state transition errors to be adjusted by adaptive Kalman Filtering.

The dual-polarized weather radar and the GPS antenna of
SuomiNet station SG40 at FMI, Helsinki, Finland:




The mass pile-up of 17 March 2005 in Helsinki |

air -6 °C, 300 cars wrecked, 70 injuries and 3 deaths:

”The Great Wave off Kanagawa”

by Katsushika Hokusai (1760-1849):
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Concluding remarks:

* GPS tomography detects water vapor unlike weather
radar

* The Fast Kalman Processing using the HWb method
applies to real-time precision GPS engineering

* Reliable accuracy estimates of each GPS signal are
now operationally computable from the MINQUE
theory by making use of the HWb method (pat. pend.
PCT/FI12007/00052)

* Early warning systems for tsunamis, earth quakes,
shaking buildings, etc. can operate using low-cost
GPS/Glonass/Galileo/Beidou receivers

* A EUREKA project is proposed under the title of
VRS2MOBILE for precision piloting and navigation
(crf. The NASA Global Differential GPS service)

Thank you for your attention!
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Meteorological R&D on the use of ground-based
GPS signals in Europe:

m EU COST Action 716: project ended March 2004

m FP5 TOUGH: Towards Optimal Use of GPS data for
Humidity measurements, continues

m E-GVAP (EUCOS GPS water VAPour): e.g. Forward
modeling of the GPS signal delays for NWP by FMI

m GPS /GALILEO water vapour_tomography: raw GPS
data from dense Virtual Reference Station (VRS)
landsurvey networks etc.

The linearized Observations Equation:

dy = Jacobian(A+S,b) db + Jacobian(g,c) dc + de

XK i

+ the Jacobian matrix of partial derivatives of A + S
functions with respect to the atmospheric state parameters

: the Jacobian matrix of vartial derivatives of 8
functions with respect to the calibration parameters
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The Semianalytic Inversion
by Frobenius 1845-1917:

Ferdinand Georg Frobenius

The sparse coefficient matrix to be inverted may often have either a bordered block- or band-diagonal
(BBD) structure. If it is band-diagonal it can be transformed into a block-diagonal form e.g. by means of a
generalised Canonical Correlation Analysis (gCCA). The large matrix can thus be most effectively
inverted in a blockwise manner by using the following analytic inversion formula:

{A B] = {A—l + AB(D — CA'B)'CA —A'B(D - CA—lB)—l]
¢ D| = —(D - CAB)CA™ (D-CA'B)!
of Frobenius where

4= a large block- or band-diagonal {(BD) matrix to be easily inverted, and,

(D-C4”™ 13} = a much smaller matrix called the Schur complement of 4.
This is the FKF method that may make it computationally possible to estimate a much larger number of
state and calibration parameters than an ordinary Kalman recursion can do. Their operational accuracies

may also be reliably estimated from the theory of Minimum-Morm Quadratic Unbiased Estimation
(MINQUE) of C. R. Rao (1920- ) and used for controlling the stability of optimal Kalman filtering.




