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SUMMARY  
 
Freeform curves with their possibility to approximate shapes from terrestrial laser scanner 
point clouds are investigated in this study. 
We focus on B-spline curves which are able to capture the local behavior of the measured 
profile. Typically, the only parameter set, treated as unknowns by the approximation are the 
control points of the B-Spline. The second parameter set, the knots, which are part of the basis 
functions, are placed at stable locations. The approach with fixed knots leads to a linear 
system, but it intuitively restricts the B-Spline curve in its flexibility. Estimating the control 
points and the locations of the knots at the same time succeeds in full flexibility of B-Splines 
and optimizes the approximation. The accrued system of equations is highly non-linear. To 
enhance the convergent behavior, constraints and adequate starting values are necessary. The 
arbitrary values of the knots are chosen with a new bottom up method, starting with the 
minimum number of knots and adding one knot in each iteration step at a particular curve 
sections (span). The decision to insert a knot at a specific location, is based on the analysis of 
the residuals in each span. 
The improvements are shown by comparing the results obtained in the linear approach with 
fixed knots and the non-linear case where control points and the knots are treated as 
unknowns. 
 
KURZFASSUNG 
Freiformkurven können zur Approximation von Punktwolken aus terrestrischen Laserscans 
genutzt werden. 
In dieser Untersuchung werden B-Spline Kurven eingesetzt, die je nach Parameterwahl lokale 
Gegebenheiten in einer globalen Approximation erfassen können. Typischerweise werden bei 
einer Approximation von B-Splines die Kontrollpunkte in einem linearen Modell geschätzt. 
Ein weiterer Parametersatz sind die Knoten, mithilfe derer die Basisfunktionen erstellt 
werden. Die gemeinsame Schätzung der Knoten mit den Kontrollpunkten ergibt ein 
hochgradig nichtlineares Gleichungssystem. Die volle Flexibilität zur lokalen Anpassung wird 
erst durch die Schätzung beider Parametergruppen erreicht. Zur Stützung des nichtlinearen 
Gleichungssystems werden Bedingungsgleichungen eingeführt und Näherungswerte für die 
Knoten mit einer neuen Methode ermittelt. Diese basiert auf den Residuen der linearen 
Schätzung der Kontrollpunkte, die in Teilbereichen der Kurve, den sogenannten Spans, 
analysiert werden. Begonnen wird die Approximation mit der Minimalkonfiguration an 
Knoten bis zu einer zuvor definierten Maximalanzahl. 
Die im neuen Ansatz erzielte Verbesserung wird durch den Vergleich der Ergebnisse aus der 
Schätzung der Knoten und der Kontrollpunkte demonstriert. 
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1. INTRODUCTION 
 
Surface-based metrology, like terrestrial laser scanner (TLS), needs new surface-based 
evaluation methods. These approximation methods are one of the main challenges making the 
information of 3D point clouds suitable and taking benefits from the redundancy. Freeform 
curves and surfaces are promising approximation methods to create parameterized curves and 
surfaces for further evaluation steps, like shape information for structural analysis of built 
objects (Schmitt et al., 2013). In the past, research has shown that freeform shapes 
significantly improve the approximation quality, compared to approximations with geometric 
primitives, e.g. (Schmitt et al., 2014).   
In this paper, B-Splines are used to approximate TLS profiles. In the past, this was only done 
by estimating the control points of the B-Spline. Another essential parameter set for B-splines 
are the knots. The optimization of the knot locations leads to a nonlinear system of equations. 
Improved arbitrary values are needed to solve the system. The accomplishment of this issue is 
a challenge and is done by a new method presented in this paper.  The optimization scheme is 
performed subsequently. Afterward the method is evaluated against the state of the art 
techniques on simulated data. Furthermore, the algorithms are tested on a real TLS 2D-profile 
data set. Extended parts of this research were already published in (Schmitt and Neuner, 
2015). 
 
2. SPATIAL APPROXIMATION WITH B-SPLINES 
 
For the spatial approximation of the TLS 2D profile data, B-Spline curves are used. They 
were designed from De Boor (DeBoor, 1978) and de Casteljau described in (Piegl and Tiller, 
1997) and applied especially in CAD designs and construction of cars. The challenge in this 
paper is to use them in the opposite way for approximating existing curves and surfaces, 
based on single points. The advantage of the B-Splines is their flexibility in matching most of 
the curves with respect to their local behavior. The local behavior of the curve is controlled by 
the distance between the knots, the span length. The smaller the spans the more curvature 
changes / local details can be modeled. The variable p defines on the one hand the degree of 
the single basis function and on the other hand the number of linear combined basis functions.  
Further parameters of the B-Splines are the control points, CPi, which can be stated as 
weights for each basis function Ni,p and obs, the homologues parameters at the curves of the 
observations, OBS (coordinates in X, Y direction) 
 

  (1) 
 
where n + 1 is the number of control points.  
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3. STATE OF THE ART 
 
B-Spline curve approximation from 2D TLS-profiles is a new field in engineering geodesy 
that refers to the deformation analyses, as shown in (Schmitt et al., 2013), (Neuner et al., 
2013).The characteristic of a TLS point cloud is normally its high point density and its 
homogeneous distributed points without gaps.  
The standard method for the parameterization of the OBS is the uniform distribution, where 
the number of points is distributed with equal space along the curve, which is mostly not the 
case for measured data. A second method based on the chord length between the OBS. It 
roughly approximates the arc length on the curve. A third one is the centripetal method, which 
contains the centripetal acceleration and curvature. Lee describes in (Lee, 1989) all three 
methods in detail, with an evaluation of them to each other and gives recommendations on 
deploying them, see also (Piegl and Tiller, 1997). 
Estimating the CPs is done by solving the linear system of equations (1).  
Separating the influence between the degree and other parameters of the estimation results is 
often hard. That’s why the arbitrary value for the degree of the basis function is chosen 
empirically and set to a fixed value with respect to the experience about the observations, the 
further applications and the requirements to the curve continuity.  
The last parameters are the knots, which are necessary for the formulation of the basis 
functions. There are two estimation issues referring to the them: first the number of knots and 
second their location inside the knot vector, the most complex one. For the number of knots, 
the AIC element provides promising results, shown in (Lindstrom, 1999) and (Harmening and 
Neuner, 2014). Regarding the location of the knots the uniform distribution performs poorly 
on heavy irregular curved data sets. Other algorithms depending on the distribution of the 
observations, like the basic method described in (Piegl and Tiller, 1997) and its extended 
version in (Piegl and Tiller, 2000) by considering the Schoenberg-Whitney condition 
(Schoenberg and Whitney, 1953). A further algorithm is the section midpoint strategy, which 
sets a new knot in the middle of a span, or at the position with the highest residual to an 
arbitrary curve. Others techniques uses the arbitrary length and curvature for the knot 
placement, e.g. (Razdan, 1999), (Park and Lee, 2007). Estimating the location of the knots 
during the approximation leads to a highly nonlinear optimization problem as mentioned 
before, which is denoted as the “lethargy” and extensively described in (Jupp, 1975). 
 
4. IMPLEMENTATION 
 
The developed approximation performed here, describes an iterative two-step estimation of 
the control points and knot locations. It is focused on the optimization of the geometric 
parameters itself. This is the reason why the identity matrix was used in the stochastic model. 
The following schema shows the individual steps of the method: 
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Figure 1: Algorithm sequences 

In the first step the parameters (obs) for the measured 2D points are estimated with the 
methods uniform or centripetal appropriated to the datasets. In the 2nd step the CP for the 
minimal configuration of the B-splines, denoted as Bézier curve, with p+1 basis functions, are 
estimated using the linear least squares Gauß-Markov model (1).  
For the B-Splines used here, the first and last control point fit the first and last observation 
respectively. These restrictions and the composition of the minimal knot vector with p+1 zero 
values and p+1 one values, imply that the slope of the line between the first and second CP 
and between the last and penultimate CP is equal to the slope of the curve at the start and end 
point. The restrictions are necessary to prevent oscillations of the curve at these points and 
applied to all approximations, which are mentioned here. 
Based on the residuals obtained from the CP estimation the new knots and their locations are 
estimated iteratively within the loop I (step 3 – 5).  
In each span two cumulative sums of squared residuals are calculated. One starting from left 
to right and second starting from right to left. The squared sum can be understood as the 
potential energy (pt) of the residuals inside a span. The position (ppt) inside a span, at which 
the subtraction of both versions, pt left-right and pt right-left, is zero, is the position, which is 
needed to reduce the pt with the highest effect. The value of the cumulative sum at this point 
is denoted as (ept). The new knot will be inserted in the span with the highest ept value to 
reduce the highest pt in the curve. At each iteration step of loop I, only one new knot is 
inserted. In step 4 the position of the new CP, which occurs due to the new knot insertion, is 
estimated with the model (1). Afterwards only the location of the new knot is improved by a 
nonlinear iterative estimation (loop II) using a restricted linearized Gauss-Markov model (step 
5). In this model only the position of the new knot is unrestricted while all other knots are 
fixed by constraints.  
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In step 6, the new locations of the CP’s are estimated using the optimized new knot position. 
The quality parameters of the results are obtained in step 7, after the convergence of the 
nonlinear model (loop II) and the insertion of the maximum number of knots (loop I). A 
simultaneous global optimization of the curve parameters, the CPs and the knot location 
cannot be realized yet due to reasons shown in the next chapter. 
 
5. SIMULATED DATA 
 
Simulation studies performed in this chapter aim to validate the developed method and to 
infer its behavior. Therefore, the test dataset was generated referring to the TLS profile 
analyzed in chapter 6. The noise is processed from the normal distribution. The number of 
sample points, 5000, are chosen as high as the σapost.,lin., obtained from the linear 
approximation in step 2, is equal to the value σapost.,sim, used by preparing the simulation data, 
e.g. Table 1. The sample points are distributed uniformly with a point to point distance of 
0.015.  
 
Table 1: B-Spline parameters for simulated data 

Type Values 
Knot vector {0, 0, 0, 0.10, 0.15, 0.30, 0.55, 0.60, 0.75, 0.90, 1, 1, 1} 
Number of knots 13 
Number of basis functions / CP  10 
Degree p 2 
Dimension 2 (X,Y) 
Noise – Variance 0.005² 
Number of sample points 5000 

 
Different estimation scenarios were applied on the simulated curve; these are summarized in 
Table 2. The degree of the basis function and the number knots were set equal to the ones of 
the designed B-Spline. All three above-mentioned methods of parameterization were applied 
to the observations. A comparison of the obtained results is given in Table 3. For further 
processing the parameters were not recalculated. Instead, they were taken directly from the 
simulated B-Spline  
 
5.1 Results 
 
The convergent criteria, which was reached after the second iteration, shows that the 
algorithm and the digits of the values are precise enough for our application.  
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Table 2: Approximation results compared to each other – on simulated data (TF = Test value, 
F9984, 9984, 0.05  = Quantil of the fisher distribution) 

Noise Method σapost. TF TF F9984, 9984, 0.05 
Yes New method nonlinear 0.11  

1.09 
1.03 Yes New method linear 0.12 

1.53 
Yes Basic  0.18  

 
The results of three methods are compared: 

- The developed method - nonlinear (including loop II), 

- The developed method - linear (without loop II), 

- The basic/state of the art method.  

The arbitrary knot placement strategy shows “significantly” better results than the traditional 
one, in case of uncorrelated variances. The standard deviation is taken from the linear least 
squares with the CP’s as unknowns.  
 

 
Figure 2: Result of the B-Spline curve approximations with the simulated data 

Figure 2 shows the curves obtained with the methods from Table 2. The highest residuals are 
at the beginning where the developed method produces in the linear case sharp peaks. The 
nonlinear method is closer to the OBS, but with a high curvature turn. The traditional method 
leads to a complete shift at the beginning, which can be interpreted with a shift of the knots at 
that part. No systematic effects can be observed from the distribution of the CPs. 
Hypothesis tests cannot be performed correctly on the results, because in our case the 
functional model of each method changes. The reason is the different knot vector, which 
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affect the calculated basis functions and the affiliation of the obs to the basis functions. This 
aspect justifies the sequential knot optimization: the updates of the knot position in loop II are 
related to the actual functional model and not to the new one that accounts for changes of the 
basis-function allocation and the relation of the obs to the basis functions.  
The reason for using the parameters of the simulated B-Spline itself is given by the 
differences between the three mentioned methods.  
Figure 3 shows the differences between the three parametrization methods:  
 

 
Figure 3: Parameters of the obs, calculated with different methods 

The parameters differ significantly in the part of the curve with high curvature. As a result of 
this all known parameterization methods allocate insufficient obs between the spans for the 
further approximation algorithms. This can be noticed in Table 3, where all linear 
approximations of the control points significantly differ from the ones obtained for the 
uniform/simulated case.  
 
Table 3: Results of linear least squares with different obs values (TF = Test value, F9984, 9984, 

0.05 = Quantil of the fisher distribution) 

Noise Method σapost. TF TF TF F9984, 9984, 0.05 
Yes Simulated (uniform) 0.0052  

56 
40 

1.034 Yes chordal 0.2932 
1.38 

 
Yes centripetal 0.2120  40 
 
 
6. MEASURED DATA 
 
The measured data are produced from a TLS profile scan, with a total length of 14 m. The Z 
coordinate needs to be sensitive. Therefore it is trend reduced and scaled to [mm]. The Y 
coordinate is in [m] and represents the step size of points. The point density was reduced from 
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12293 to 5000 points in order to emphasize the impact of the step size. The parameters for the 
B-Splines are given in Table 4. 
 
Table 4: Parameters for the B-Spline approximation of the measured data 

Type Values 
Number of knots 22 
Number of basis functions / CP  19 
Degree 2 
Dimension 2 (Z,Y) 
Sample points 5000 / 12293 
 
The curve parameters allocated to the OBS are calculated with the centripetal method. It has 
generated the best result compared with the other parameterization methods. 
 
6.1 Results 
 
The estimation results are summarized in Table 5. As can be seen the new arbitrary knot 
estimation method is better than the estimation of the CPs only in the linear model. However, 
the decrease of the standard deviation of the CP estimation is not as strong as in the case of 
the simulated data set. The variation of the number of knots, degree of the basis function and 
the number of OBS results in the order from the best result by the new method - nonlinear to 
the basic method, in Table 5. The “significant” changes need to be carefully interpreted with 
the difficulties of the Hypotheses test in mind, mention in the result of the simulated data. 
 
Table 5: Approximation results compared to each other – on measured data (TF = Test value, 
Ff1, f2, 1-alpha  = Quantil of the fisher distribution) 

Num. Points Method σapost. 
[mm] TF TF F9940, 9940, 0.05 / 

F24526, 24526, 0.05 

5000 
New method non linear 0.68  

1.07 
1.03 New method linear 0.73 

1.33 
Basic 0.97  

12293 
New method non linear 0.70  

1.07 
1.02 New method linear 0.75 

1.25 
Basic  0.94  

 
Figure 4 shows the different B-Spline curves after the knot estimation with the three methods 
in the case of 5000 sample points.  
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Figure 4: Result of the B-Spline curves approximation on measured data 

Especially at the beginning of the curve, the developed methods lead to closer fits to the OBS. 
In the section between 0 m and 4 m, the approximation with the basic method is more 
detailed. These oscillations appear also in the case of estimation with the new methods by a 
higher number of knots. The differences between the linear and the nonlinear case of the new 
method, is the smoothness of the curve. While in the linear case the curve is approximated 
with sharp peaks and the nonlinear model leads to rounded peaks and a smoother curve.  
 
7. CONCLUSION 
 
The developed method for the knot estimation improves the approximation of TLS profiles 
with B-Splines. The algorithms were validated with simulated data and applied on real data. 
They show “significantly” better results than the basic method.  
When estimating all knot locations at once the algorithm becomes unstable. Despite the 
functional problems during the nonlinear iteration, the algorithm converges when estimating 
only one knot by using small update values. Estimating only one knot location at each 
iteration step of loop II leads to good results also in case of higher knot numbers. Oscillations 
like in the case of polynomials with higher degree didn’t occur when the estimation was 
performed up to 23 knots on the simulated dataset in order to reach the standard deviation 
original variance.  
The influence of the parameterization tends to be higher than the influence of the correct 
number of the knots. Whereby, similar approximation results were achieved by different 
numbers of OBS. 
Extending the sequential nonlinear model to a global estimation of knots and CP’s is aimed in 
future research. 
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