

Detecting Heithing Heit Iter TLS-based area deformation measurements Presented a 10 Gorinna Harmening, Harr

3rd May 2016

Platinum Partners:

Motivation

Classical engineering geodesy

- Point-based
- Targeted discretization is necessary
- Only selected object points are regarded
- Point-based analysis strategies are available

TLS-based engineering geodesy

- Fast and contactless data acquisition
- High point densities
- Areal analysis strategies are required

from disaster

Motivation

Areal deformation modelling

- 0 Rigid body movement as a first step in areal deformation modelling
- Two laser scanner point clouds of different measurement epochs
- 0 No point correspondences
 - \rightarrow How to determine the parameters of the rigid body movement?

Platinum Partners: Diamond Partner 🛞 Trimble 🛛 🚷 esri 🔄

Outline

Motivation

Modelling of point clouds using B-spline surfaces

Detecting rigid body movements

Summary

Platinum Partners:

Diamond Partner

from disaster

Outline

Motivation

Modelling of point clouds using B-spline surfaces

Detecting rigid body movements

Platinum Partners:

Diamond Partner

from disaster

Diamond Partner

Modelling of point clouds using B-splines

$$\hat{\mathbf{S}}(u,v) = \mathbf{S}(u,v) + \mathbf{e} = \sum_{i=0}^{n} \sum_{j=0}^{m} N_{i,p}(u) N_{j,q}(v) \mathbf{P}_{ij}$$

S (<i>u</i> , <i>v</i>)	:	surface point		
<i>u</i> , <i>v</i>	:	surface parameters		
е	:	residuals		
\mathbf{P}_{ij}	:	(n+1)x(m+1) control points		
$N_{i,p}(u)$:	i-th B-spline basis function of degree		
$N_{j,q}(v)$:	<i>j</i> -th B-spline basis function of degree of		

Platinum Partners:

Trimble @esri _ Mew Zealand

Modelling of point clouds using B-splines

$$\hat{\mathbf{S}}(\boldsymbol{u},\boldsymbol{v}) = \mathbf{S}(\boldsymbol{u},\boldsymbol{v}) + \mathbf{e} = \sum_{i=0}^{n} \sum_{i=0}^{m} N_{i,p}(\boldsymbol{u}) N_{j,q}(\boldsymbol{v}) \mathbf{P}_{ij}$$

S (<i>u</i> , <i>v</i>)	:	surface point
<i>u</i> , <i>v</i>	:	surface parameters
е	:	residuals
\mathbf{P}_{ij}	:	(n+1)x(m+1) control points
$N_{i,p}(u)$:	<i>i</i> -th B-spline basis function of degree p
$N_{j,q}(v)$:	<i>j</i> -th B-spline basis function of degree q

Platinum Partners:

🛞 Trimble 🛛 🚳 esri 🔄

- Coons Patch as a base surface
- Construction of three surfaces
 - Two ruled surfaces R^u_{i,j} und R^v_{i,j}

Parametrization with Coons Patch

Projection onto a base surface with known parameters

- Coons Patch as a base surface
- Construction of three surfaces
 - Two ruled surfaces R^u_{i,j} und R^v_{i,j}
 - Bilinear interpolant of the four corner points B^{u,v}_{i,i}

Platinum Partners:

Outline

Motivation

Modelling of point clouds using B-spline surfaces

Detecting rigid body movements

Platinum Partners:

Diamond Partner

from disaster

Detecting rigid body movements

Rigid body movement

• Similarity transform of a single point of the point cloud:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{II} = m \cdot \mathbf{R} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{I} + \mathbf{t}$$

- m : scale factor
- R : rotation matrix
- t : translation vector

from disaster

- I, II : measuring epoch
- The same similarity transform is present in the B-spline control points:

$$\mathbf{P}_{II} = m \cdot \mathbf{R} \cdot \mathbf{P}_{I} + \mathbf{t}$$

 \rightarrow In case of rigid body movements, the modelling with B-splines reduces the areal deformation problem to a classical point based one!

Diamond Partner

esri

Simulation studies

Simulated rigid body movement

- Based on one measured point cloud
- Ocomputational translation of this point cloud by means of the nominal values:

 $t = [100 \, mm, 250 \, mm, -50 \, mm]$

Ocomputational rotation around the x-, y- and z-axis with the nominal angles:

 $\alpha = [-7^{\circ}, 15^{\circ}, 45^{\circ}]$

 \rightarrow Point cloud of the second epoch

- Independent approximation of the two point clouds by means of B-splines
- Estimation of the transformation parameters from estimated control points:
 - $\hat{t} \hspace{0.1 cm} = \hspace{0.1 cm} [99.9999908 \, \textit{mm}, 249.999979 \, \textit{mm}, -50.000011 \, \textit{mm}]$

Platinum Partners:

Trimble_

 $\hat{\alpha}$ = [-7.0000034°, 15.0000042°, 44.9999974°]

 \rightarrow Only numerical inaccuracies

Practical measurements

Measured rigid body movement

- Based on a test specimen with B-spline form
- External points allow a definite placement of a lasertracker reflector
- Scanning of the specimen at two different locations
- The lasertracker measurements give the nominal transformation parameters

Platinum Partners: Diamond Partner

Practical measurements

Datum problem of B-splines

- Two different point clouds
- Different boundaries result in different parameter lines: → Datum of B-splines
- The datum and as a consequence the parameter lines have to be identical

Solving the datum problem

- Determination of corresponding boundary points by means of the ICP algorithm
- Only these points are used to determine the boundary curves
 - \rightarrow Parameter lines are nearly unchanged

Practical measurements

X [m]

Y [m]

Parameters	Nominal	Measured	Std		
tx [m]	-0.263	-0.251	0.011		
ty [m]	0.100	0.110	0.009		
tz [m]	0.000	0.001	0.001		
rz [gon]	- 2.2115	- 2.0675	0.1252		

Platinum Partners:

Outline

Platinum Partners:

Summary

Summary

- Areal approach to determine rigid body movements of point clouds
- Modelling of each acquired point cloud by means of B-spline surfaces
- A priori determination of appropriate surface parameters
- The rigid body movement of the point cloud can be retrieved from the rigid body movement of the estimated B-spline control points

Platinum Partners: Diamond Partner

Thank you for your attention!

Corinna Harmening and Hans Neuner

Department of Geodesy and Geoinformation Research Group Engineering Geodesy TU Wien Gußhausstraße 27-29, 1040 Wien

Phone: +43-1-58801-12839 E-Mail: corinna.harmening@geo.tuwien.ac.at Website: www.ingeo.tuwien.ac.at www.geo.tuwien.ac.at

Platinum Partners:

