

Research objectives

Most filtering algorithms require rasterization of lidar data

- Additional computing overhead
- Loss of information
- Increase of uncertainty

Proposed method

- No rasterization
- Adaptive window size
- Adaptive morphological filtering
- Normal difference vegetation index
- Hierarchical clustering and thresholding
- Delineated based on alpha-shape and Douglas-Peucker algorithms

Filtering out ground points

✓ A large window size increases the omission error (false negative), and a small window size increases the commission error (false positive).

✓ A progressive morphological filter repeats the process several times by gradually increasing the window size, but the choice of the assigned weights can still be an issue.

✓ We added an adaptive function that can automatically detect a size of the above-ground features and change the window size accordingly.

Proposed adaptive filtering

✓ Use dilation and erosion to find the maximum or minimum within the window.

✓ An adaptive window size indicator is developed to detect building rooftops and modify the window size automatically.

✓ An approximate size of a building can be detected by measuring the elevation rise and fall, and therefore the window size can be changed accordingly.

Adaptive filtering (Workflow)

Vegetation removal

✓ NDVI alone may not produce a reliable accuracy if the threshold is not appropriate.

✓ We used a progressive approach after applying NDVI to remove the residuals as well as other unwanted small features.

✓ Hierarchical clustering based on Euclidean-Distance is performed to the points.

✓ Based on height, area and the number of points, thresholds were optimized step by step to remove the clusters of non-building points.

Approaches to building edge detection

- ✓ Alpha-shape to form building outlines
- ✓ Grid-based algorithm
- ✓ Modified convex hull algorithm
- ✓ Fine-tuning with adjustable parameters to remove small residuals

Alpha-shape algorithm

Grid-based algorithm

Modified convex hull algorithm

Boundary Extraction (1/2)

• Alpha-shape

Modified convex hull

Boundary Extraction (2/2)

• Grid-based

Datasets

✓ Lidar data were acquired with Leica ALS50-II on 20 April 2011 over Bathurst, New South Wales, Australia.

 \checkmark The data contain up to 4 returns per transmitted pulse.

✓ Multiple returns usually occur on the edge of buildings or trees that allow the laser beam to penetrate.

✓ The horizontal accuracy and vertical accuracy of the lidar data are 0.8 m and 0.3 m, respectively, with an average point density of 1.57 points per square meter.

✓ The aerial ortho-image was obtained on 10 April 2013.

 \checkmark Reference building polygons are digitized from this image and are used to assess the test results.

Test Data A: ortho-photo

Test Data A: digitized polygons

Test Data A: extracted polygons

Test Data B: ortho-photo

Test Data B: digitized polygons

Test Data B: extracted polygons

Incorrect detection (1/3)

Incorrect detection (2/3)

Incorrect detection (3/3)

Object-based evaluation (1/3)

✓ Completeness C_m ratio between the number of correctly matched polygons and the total number of polygons, both in the reference

✓ Correctness C_r ratio between the number of correctly matched polygons and the total number of polygons, both in the extraction

$$\checkmark \text{ Quality } Q_i$$

$$Q_i = (C_m^* C_r) / (C_m - C_m^* C_r + C_r)$$

Object-based evaluation (2/3)

✓ Fusion rate F_u percentage of polygons where a single polygon in the extraction must be in fact multiple polygons.

✓ Fission rate F_i

percentage of polygons where multiple a set of polygons in the extraction must be in fact a single polygon.

Object-based evaluation (3/3)

Object- based	Ст	Cr	Qi	Fu	Fi
Site A	96.34%	98.46	94.91%	21.95%	4.62%
Site B	94.29%	92.73%	87.80%	21.43%	0.00%

Area-based evaluation (1/2)

- ✓ Completeness (C_{ma})
- \checkmark Correctness (C_{ra})
- ✓ Quality (Q_{ia})
- ✓ Area omission error (E_{ro})
- ✓ Area commission error (E_{rc})

Area-based evaluation (2/2)

Area- based	Cma	Cra	Qia	Erc	Ero
Site A	88.28%	91.35%	81.47%	8.65%	11.72%
Site B	86.32%	88.83%	77.87%	11.17%	13.68%

Concluding Remarks

 \checkmark The proposed algorithm is suitable for urban areas with varying building dimensions.

 \checkmark The required parameters of the proposed algorithm can be automatically determined.

✓ The test results show that the proposed algorithm is able to classify ground points with a vertical accuracy of 36 cm, a horizontal accuracy of 75 cm.

✓ Multi-rooftop buildings are difficult to detect, but the dual-direction process can improve the result.

