

Development and evaluation of a geodetic measurement system for IMU-based high-precision azimuth transfer

Lorenz Schmid, Nino Kracher, David Salido-Monzú schmidl@ethz.ch, krachern@ethz.ch

IGP

Introduction: Gotthard Base Tunnel

- Important connection between North-South for freight and public transport
- Shift freight from truck to trains

Longest & deepest railway tunnel in the world 57.1 km Construction: 1999 – 2016

IGP

Introduction: Intermediate Access Sedrun

- Construction in 5 individual sections
- Starting from 5 sites simultaneously
- 3 intermediate construction sites accessed by connection tunnels

Multifunctional Station Sedrun accessible over

- ca. 1km tunnel and 800m vertical shaft
- Geodetic not trivial
 - \rightarrow one challenge: azimuth determination

Introduction: North Seeking Gyro

Combination of a theodolite and a declination gyroscope

Pros

- Direct determination of astronomic north based on Earth rotation
- No external reference needed (GPS, fixpoint network, stars)

 \rightarrow works underground

Cons

IGP

- Technically sophisticated
- High investment & maintenance cost
- No independent control

Motivation / Goals

- Development of an additional instrument for azimuth determination
- Prototypal IMU based azimuth transfer (ETH, TUM) in Sedrun showed promising results in 800 m deep shaft
- Replacement with less expensive IMU
- Development of platform / software / measurement procedure for IMU based azimuth transfer
- Assessment of reachable accuracy in different situations (empirical measurements, simulation)

Measurement Principle

- Transfer of azimuth from geodetic network above ground to network below ground
 - Measure orientation change between two resting positions of platform
 - Orientation change = integration of angular rates (IMU)
 - Azimuth transfer from network to platform via autocollimation prism & total station (above ground) and vice versa under ground
- Procedure is carried out several time in order to increase accuracy and reliability

ETH zürich

Platform Autocollimation Prism (GAP1) Battery (power supply) Logging interface KVH 1750 IMU Kern ground plate (for leveling)

Specification of KVH 1750

Bias offset [°/hr]	±2
Bias instability [°/hr]	≤ 0.05
Angle Random Walk [°/hr/ \sqrt{Hz}]	≤ 0.7

Processing

Results: vertical shaft (elevator)

Orientation offset SD = 3.5 mgon

Test setup: 27m long shaft (30s) repeated 10 times

Results: horizontal shaft

1D-integration

Mean Orientation offset: -0.96 gon STD orientation offset: 4.80 gon

3D-integration

Mean Orientation offset:21.1 mgonSTD orientation offset:78.0 mgon

Test setup:

25m path, walked forth & back (60s), repeated four times

Conclusion

- Design & Implementation of IMU based azimuth transfer system
 - Measurement platform with IMU, autocollimation prism and acquisition hardware
 - Measurement Protocol
 - Data processing software: 1D / 3D integration, motion detection, alignment, user-friendly
- Simulation Tool for generating realistic IMU data for a given trajectory and IMU-specifications
- Relatively good agreement of empirical measurements and simulation (autocollimation uncertainty / vibration not considered)
- IMU platform can substitute a north-seeking gyro in some situations or provide additional independent control

Results: IMU noise / Spectral analysis

Further Experiments

- Horizontal shaft (trolley / hand held)
- 360°-rotation of levelled platform (scale factor)
- 360°-rotation of tilted platform (sensitivity of 1D integraiton)
- Effect of earth rotation (if tilted drift of 1D integration)