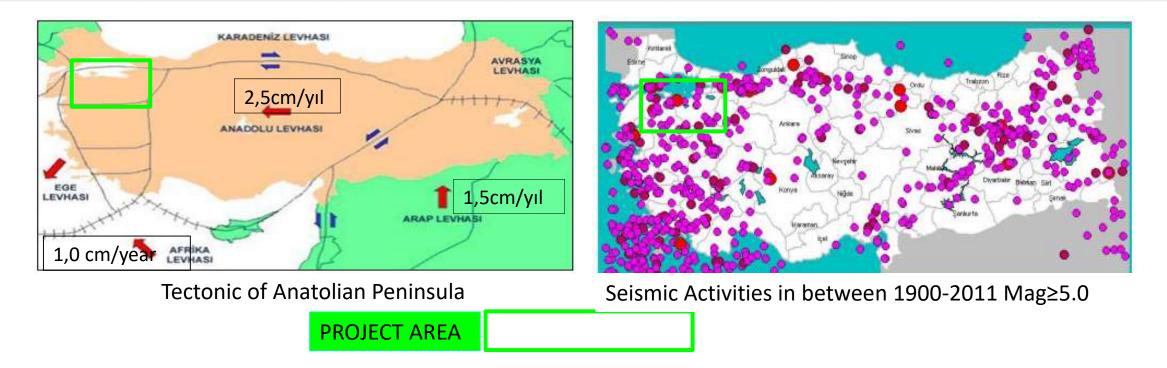
DEFINITION OF A UNIQUE TRANSFORMATION PARAMETERS FOR BURSA METROPOLITAN MUNICIPALITY AREA OF RESPONSIBILITY

> Ömür Engin DEMİRKOL, Turkey (e.g. Mehmet Ozan FAKIOĞLU, Numan ÇAKMAK, Ahmet GÜNTEL, Turkey)

CONTENT

- MOTIVATION
- BACKGROUND
- PREPARATORY WORKS
- CONSTRAINTS
- TRANSFORMATIONS
 - HELMERT SIMILARITY TRANSFORMATION (HST)
 - ✤ DEDUCTIVE METHOD
 - *** INDUCTIVE METHOD**
 - * UNIFIED (DEDUCTIVE+INDUCTIVE) METHOD
 - *** EXTERNAL QUALITY CONTROL**
 - ✓ GEODETIC EQC
 - ✓ CARTOGRAPHIC EQC (0,-1,A,B,C CODED SOLUTIONS)
 - **o DIRECT SOLUTION(DS SPLINE FUNCTION)**
 - **o HYBRID SOLUTION (HST+HS)**
 - ✤ CARTOGRAPHIC EQC (0,-1,A,B,C CODED SOLUTIONS)
- CONCLUSION


MOTIVATION

Bursa Metropolitan Municipality(BMM) M5 Mapping Project namely;

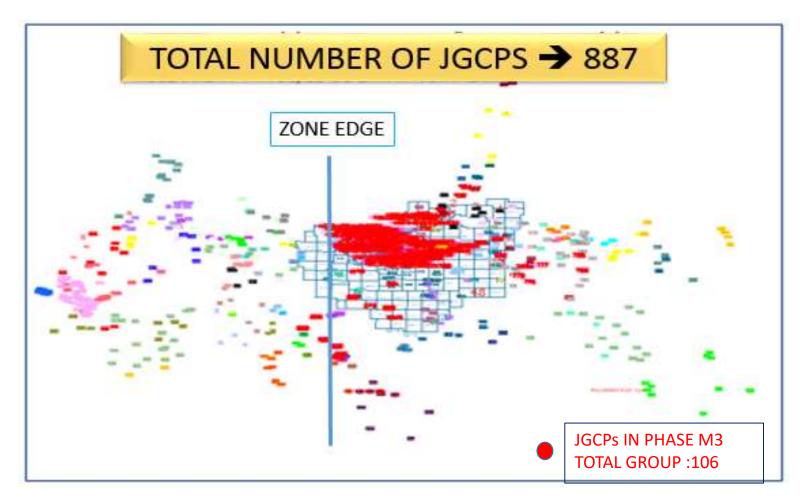
- «1/1K & 1/5K Scale Digital Photogrammetric Line and Orthophoto Map Production » is awarded in 2014.
- One of the demand was define a unique transformation parameter set for the area of responsibility(AOR) of 12000 km².

BACKGROUND

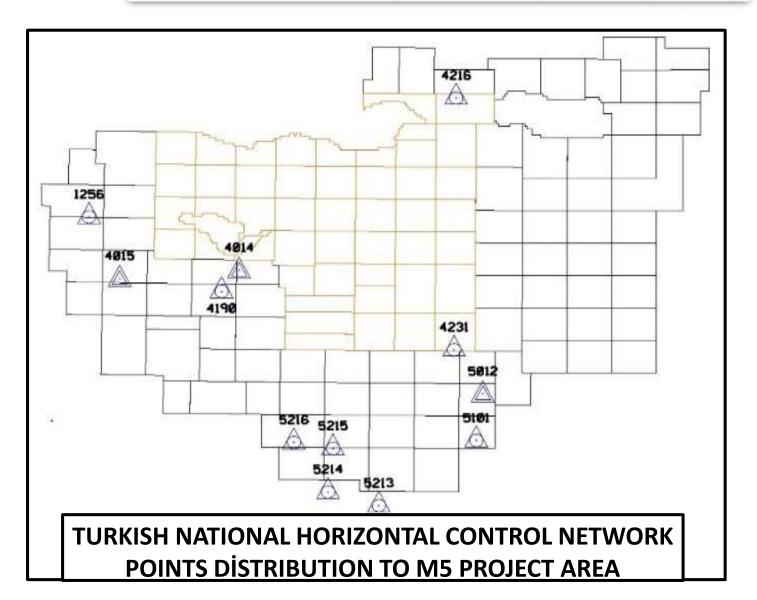
- Turkish National Horizontal (Triangulation) Control Network (TNHCN) adjusted in 1954 (Hayford 1925 ellipsoid 'European Datum 1950:'ED50'),
- Turkish National GPS Network(TNGN05) adjusted in 2005 (GRS80 ellipsoid, ITRF96 and 2005.0 Epoch),
- Project Area is located one of the most active seismic zone of Anatolian Peninsula

BACKGROUND

BMM Mapping Projects


						TRA	NSFORMA	TION
PRJ ID	START	END	AREA(km²)	DATUM	Γ	HST	JGCP	DEG(ED50)
M1	1996	1998	1600	ED50				
M2	2002	2004	2200	ED50				
M3	2009	2011	3500	ITRF96		2009	34	III/IV
M4	2011	2013	3500	ITRF96		7 2009	34	III/IV
M5	2014	2017	12000	ITRF96		2017	146	1/11/111

When the Project area is examined,


- Since 2005,106 different transformation groups in and around the Project area determined ,
- A total of 887 Points defined as Joint Transformation Set

PREPARATORY WORKS

• 887 Points located in 106 Groups Distribution to Project Area

TURKISH NATIONAL HORIZONTAL CONTROL NETWORK FIRST AND SECOND ORDER POINTS IN M5 PROJECT AREA

TOTAL : 12 GCPs PHYSICALLY ALIVE (GENERAL COMMAND OF MAPPING: GCM POINTS)

FIRST(I) ORDER 3 GCPSECOND(II) ORDER 9 GCP

CONSTRAINTS

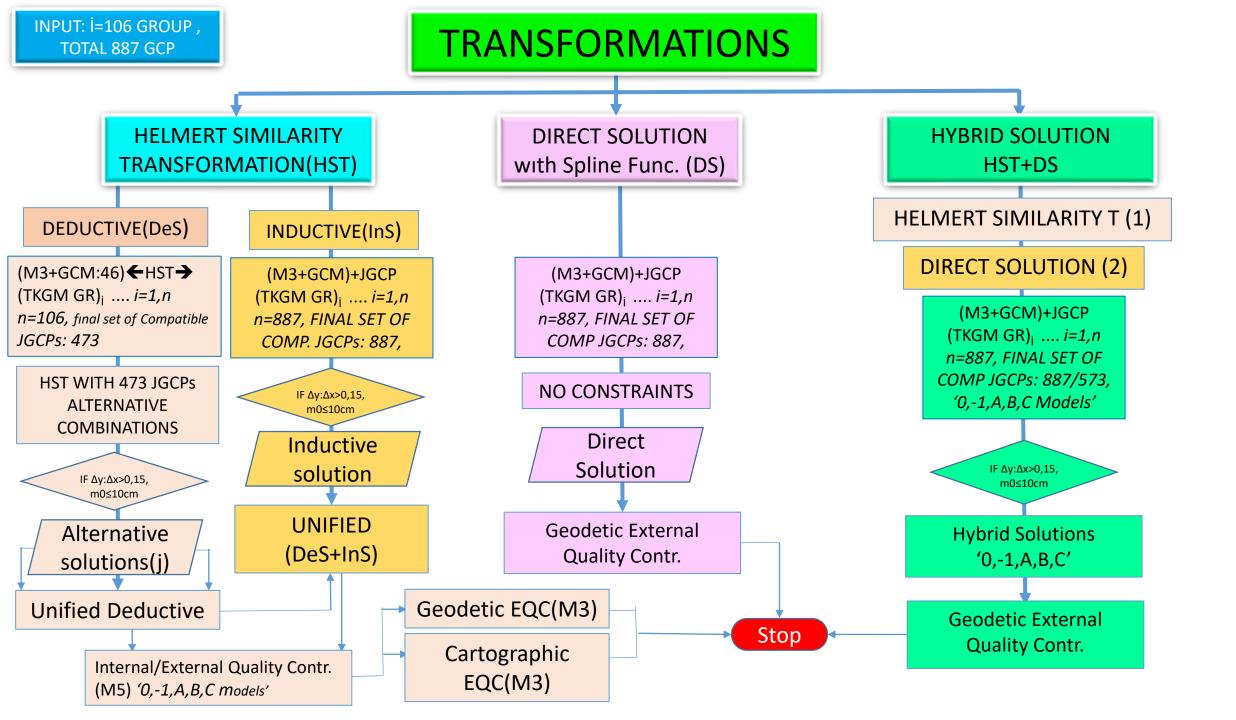
<u>Constraints imposed by TOR</u>; New Transformation parameters :
<u>TOR CONS.</u>: should not create matching problems with

►<u>M3/M4</u>

OTHER GROUPS of TRANSFORMATIONS

Constraints imposed by Technical Regulation

REG CONS:


o Transformation adjustment corrections (IQC) and

• External Quality Control (EQC) differences should be less than 0.15m.

<u>Δy≤0.15m; Δx≤0.15m</u>

Adjustment <u>Mean Square Error should be less than</u>

<u>m₀ ≤ ±0.10m</u>

DEDUCTIVE HST APPROACH

HSTs AND HIERARCHICAL POINT BASED ELIMINATION OF 473 JGCPs SET ,FOUND AS COMPATIBLE WITH (M3+HGK) DATA AS PER THE RESULT OF DUAL HELMERT SIMILARITY TRANSFORMATION

M3+HGK VE TKGM GRUPLARI İKİLİ ÇÖZÜMLERİ SONUCU UYUŞUMLU BULUNAN NOKTALAR İLE OLUŞTURULAN DÖNÜŞÜM ORTAK NOKTA KÜMELERİ VE DÖNÜŞÜMLERİN ÖZETLERİ

(M3+HGK) ←HST→				No	kta Say	/ISI	[Dönüşüm Pa	arametrele	ri	Dengeleme	İstatistikleri	MAKS	IMUM	MINI	MUM
(TKGM GR) _i <i>i=1,n</i>	Açıklamalar	Çözüm No	Eleme	Ortak	Uyuşu m suz	Kul.lan	Ölçek	(α)Dönük (grad)	Cy (Δy) (m)	Cx (Δx) (m)	M0 (m)	Mp (m)	(Δy) (m)	(∆x) (m)	(∆y) (m)	(Δx) (m)
TOTAL JGCPs: 473	M3	M3	∆y:∆x=> 0,5	34	0	34	6,506	0,00010	39,531	156,137	0,057	0,080	0,45	0,16	-0,23	-0,22
	İkili Çözümler	M3+HGK+TKGM M5	EŞLENİK	487	14	473	15,826	-0,00026	47,756	114,365	1,481	2,095	2,71	1,66	-5,50	-2,91
	Grup Bazlı	Ön Eleme 1	∆y:∆x=> 2m	473	89	384	15,826	-0,00026	47,756	114,365	1,481	2,095	2,71	1,66	-5,50	-2,91
	Eleme	Ön Eleme 2	Δy:Δx=> 2m	384	19	365	4,134	0,00000	33,982	167,447	0,201	0,284	1,15	1,28	-1,93	-1,47
HST WITH 473 JGCPs		Ön Eleme 3	Δy:Δx=>0,3m	365	52	313	4,068	-0,00001	34,092	167,737	0,181	0,256	0,67	0,57	-0,46	-0,61
IST WITH 475 JUCPS	U	Ön Eleme 4	Δy:Δx=>0,25m	313	8	305	3,886	0,00000	34,066	168,547	0,174	0,246	0,50	0,57	-0,44	-0,61
	Eleme	Ön Eleme 5	Δy:Δx=>0,25m	305	4	301	3,85	-0,00001	34,268	168,688	0,174	0,241	0,27	0,56	-0,43	-0,62
	Ë	Ön Eleme 6	Δy:Δx=>0,15m		29	272	3,798	-0,00002	35,283	168,839	0,164	0,232	0,24		-0,41	-0,63
m ₀ > 1,00 m	<u>z</u>	Ön Eleme 7	Δy:Δx=>0,3m	272	31	241	4,072	-0,00004	36,654	167,481	0,129	0,183	0,25		-0,34	-0,34
	Ba	Ön Eleme 8	Δy:Δx=>0,15m	241	95	146	3,891	-0,00003	36,229	168,297	0,090	0,128	0,22	0,23	-0,32	-0,19
	Nokta	Ön Eleme 9	Δy:Δx=>0,15m	146	14	132	3,872	-0,00002	35,139	168,465		0,115	0,21	0,22	-0,23	
0,10m <m₀ 1,00="" m<="" td="" ≤=""><td></td><td>Ön Eleme 10</td><td>Δy:Δx=>0,15m</td><td></td><td>12</td><td>124</td><td>3,934</td><td>-0,00002</td><td>35,267</td><td>168,172</td><td></td><td>0,107</td><td>0,13</td><td>0,17</td><td>-0,15</td><td></td></m₀>		Ön Eleme 10	Δy:Δx=>0,15m		12	124	3,934	-0,00002	35,267	168,172		0,107	0,13	0,17	-0,15	
	~	Ön Eleme 11	Δy:Δx=>0,15m	124	3	121	3,961	-0,00002	35,246	168,060	0,074	0,105	0,13	0,15	-0,15	-0,14
		Ön Eleme 12	Δy:Δx=>0,15m	121	19	102	4,103	-0,00002	34,855	167,462	0,065	0,092	0,13	0,13		
m _o ≤ 0,10 m		ORTALAMA(eşlenil	k+Ön eleme1)	480	52	429	15,826	-0,00026	47,756	114,365	1,481	2,095	2,71	1,66	-5,50	-2,91
		ORTALAMA(Ön	Eleme 2-7)	323	24	300	3,968	-1,3E-05	34,724	168,1231	0,171	0,240	0,51	0,64	-0,67	-0,71
		ORTALAMA(Ön E	leme 8-12)	153	29	125	3,952	-2,1E-05	35,347	168,091	0,077	0,109	0,16	0,18	-0,19	-0,16
Till Δy:Δx<0,15m		ORTALAMA	(Tümü)	264	28	237	5,838	-4,3E-05	37,152	159,5757	0,316	0,447	0,70	0,59	-1,16	-0,79

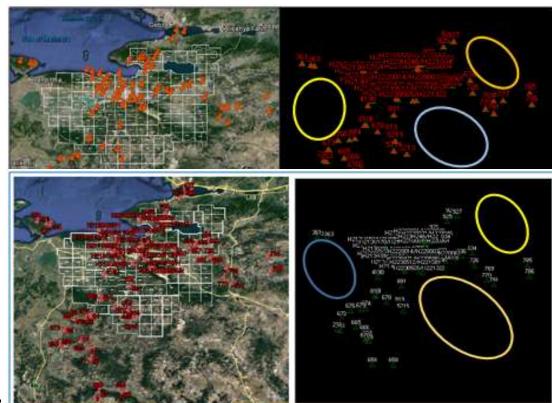
GROUPS, JGCPs AND TM ZONES

INDUCTIVE APPROACH: HSTs WITHOUT ANY CONSTRAINT

								0.v.					-										
			CI	N				C	N				C	N				C	N				
O r d	GR N U	J G P	27	30	O r d	G R N I	J G P	27	30	O r d	GR N U	J G P	27	30	O r d	G R N	J G P	27	30		SLTN IV	ELMN	JC Pt
1	1	6		1	19	20	9		18	37	45	6	5		55	83	6		45		LANS		
2	2	5		2	20	21	5	1	19	38	47	6		33	56	86	13		46		Sitn 1	Aug Avena 0	m 610
3	3	23	1		21	22	5		20	39	48	11		34	57	87	11	_	47		SIUT 1	∆y:∆x≥2,0	m 619
4	4	5		3	22	23	8		21	40	49	17		35	58	88	4	11			Sltn 2	∆y:∆x≥0,3	m 400
5	5	7		4	23	25	9	2		41	50	10	-	36	59	89	5	12				ayianzojo	
6	6	6		5	24	26	4	_	22	42	53	4	6	No.	60	90	8		48		Sltn 3	∆y:∆x≥0,1	im 239
7	7	5		6	25	27	13		23	43	57	26		37	61	93	8	-	49		-		
8	8	12		7	26	30	5	_	24	44	58	8		38	62	95	6	1.2	50		Sltn 4	∆y:∆x≥0,1	im 132
9	9	7		8	27	31	7	-	25	45	61	6	-	39	63	101	7	13	50		olu F	Aurtus0 1	m 12/
10	10	6		9	28	33	25	-	26	46	62	4		40	64	103	5	-	51		Sitn 5	∆y:∆x≥0,1	im 124
11	11	4		10	29	34	7		27	47	65	10		41	65	104	8	14					
12	12	5		11	30	38	6		28	48	67	13	-	42	66	107	6	15			Calut	an Ma	Soluti
13	13	5		12	31	39	7		29	49	70	5	7		67	108	5	16				on No	
14	14	20		13	32	40	9		30	50	71	5	8		68	111	10	17			TV	VI-1	TV
15	15	6		14	33	41	5		31	51	72	6	9	· · · ·	69	114	5	18			Nop	l Inc	Nop
16	16	7		15	34	42	10	_	32	52	73	11	10		70	118	9	2000	52	ONS	619	219	400
17	18	4		16	35	43	7	3		53	77	4		43	71	119	6		53	M3	34	0	34
18	19	9		17	36	44	5	4	1	54	82	11		44				_		HGK	12	6	6
Sum	18	142	1	17	TOP	18	146	3	15	TOP	18	163	6	12	TOP	17	122	8	9	nuk	12	0	0
												GR T	OTAL			71	573	18	53				

SLTN IV	ELMN	JC Pt	ln Ct	Cx(∆x)	Cy(∆y)	Rot : α(grad)	∆(Ölçek) (ppm)	m . (m)	mp (m)
Sitn 1	∆y:∆x≥2,0m	619	3+216	96,83	42,64	0,000204	19,867	1,83	2,58
Sltn 2	∆y:∆x≥0,3m	400	3+158	157,96	29,81	0,000044	6,35	0,43	0,61
Sltn 3	∆y:∆x≥0,15m	239	107	166,83	32,30	0,000020	4,302	0,08	0,11
Sltn 4	∆y:∆x≥0,15m	132	8	167,86	32,11	0,000024	4,074	0,08	0,12
Sltn 5	∆y:∆x≥0,15m	124	2	168,10	32,27	0,000022	4,014	0,07	0,10

	Soluti	ution No	Soluti	on No	Solut	ion No	Solut	ion No	Solut	ion No
	TV	VI-1	TV	TV VI-2		VI-3	TV VI-4		TV	VI-5
	Nop	Inc	Nop	I Inc	Nop	Inc	Nop	Inc	I Nop	I Inc
ONS	619	219	400	161	239	107	132	8	124	4
M3	34	0	34	7	27	10	17	0	17	0
HGK	12	6	6	1	5	3	2	0	2	0

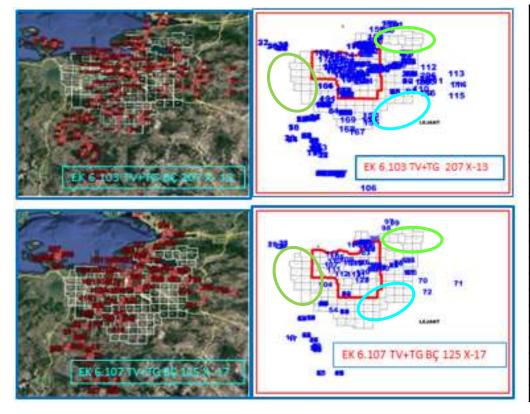

TOTAL

GROUP: 71 (CM:27→18 Grp., CM:30→53 Grp.) JGCPs : 573 ; (+46=M3+HGK)→ 619

UNIFIED DEDUCTIVE SOLUTIONS

- UNIFIED DEDUCTIVE SOLUTION OF 102 ÖNEL II-12 AND 107 ÖNEL III-7 : 102U107 : RESULT IS A 143 JGCPs SET.
- 143 JGCPs DISTRIBUTION (TGBÇ 143 VII-1)
- FOR 11 POINTS $\Delta y:\Delta x > 0,15m$

- 132 JGCPs DISTRIBUTION(TGBÇ 132 VII-2)
- FOR ALL POINTS $\Delta y:\Delta x < 0,15m$

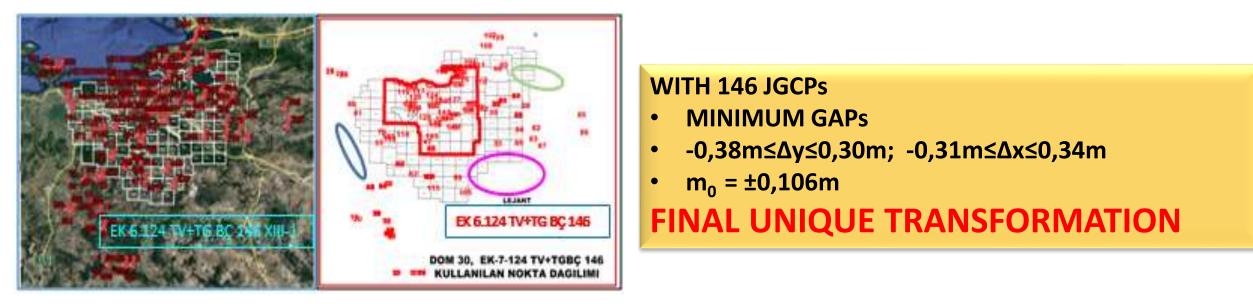


• STATISTICS FOR 143 AND 132 JGCPs HSTs.

		Nokta	Sayısı	Dö	önüşüm par	ametrele	eri	-	Deng. İstatistik.		FAR MAKSIMUM		імим
Çözüm No	Eleme	Ortak	Uyu. suz		Dönüklük (α) (grad)		cx (∆x) (m)	mo (m)	mp (m)	∆ y(m)	∆x(m)	∆y(m)	∆x(m)
TG BÇ 143 VII-1	-	143	11	4,029	-0,000042	36,738	167,60	0,081	0,115	0,24	0,21	-0,23	-0,19
TG BÇ 132 VII-2	∆y:∆x>0,15 m	132	0	4,073	-0,000041	36,631	167,41	0,073	0,104	0,14	0,13	-0,12	-0,13

UNIFIED DEDUCTIVE(TG) & INDUCTIVE(TV) SOLUTIONS(BÇ)

TG 331 ÖNEL III-1 U TV 400 ÖNEL VI-2 = (TG U TV) BÇ 469


İŞLEM	TV 400 ÇÖ	31 ÖNEL Nüşüm				BİRI	LEŞİ	Mİ D	ATU	М				
		No	kta Sa	VISI		Dönüşüm para	ametrele	ari	Denge	eleme			KLAR	
			ALCO DO	y		yonuyun pun	ametrere		İstatis	tikleri	MAKS	імим	MİNİN	імим
Çözüm No	Eleme	Ortak	Uyu. suz	Kul.	1+∆ ppm (Ölçek	Dönüklük (α) (grad)	cy (∆y) (m)	cx (Δx) (m)	mo(m)	mp(m)	∆y(m)	∆x(m)	∆y(m)	∆x(m)
400+331fark_gncl_1	Uyuşumsuz	469	3	466	5,963	0,0000250	31,238	159,575	0,407	0,575	0,70	1,38	-6,44	-1,55
400+331fark_gncl_2	Uyuşumsuz	466	5	461	4,905	0,0000500	29,896	164,414	0,270	0,382	0,83	0,69	-0,99	-1,37
400+331fark_gncl_3	Uyuşumsuz	461	3	458	4,767	0,0000370	30,876	164,930	0,254	0,360	0,84	0,66	-0,98	-0,98
400+331fark_gncl_4	Uyuşumsuz	458	2	456	4,646	0,0000310	31,368	165,421	0,247	0,349	0,85	0,64	-0,97	-0,95
400+331fark_gncl_5	Uyuşumsuz	456	4	452	4,632	0,0000260	31,681	165,451	0,242	0,343	0,85	0,63	-0,97	-0,96
400+331fark_gncl_6	Uyuşumsuz	452	2	450	4,489	0,0000220	32,025	166,053	0,233	0,330	0,76	0,62	-0,85	-0,97
400+331fark_gncl_7	Uyuşumsuz	450	1	449	4,454	0,0000180	32,341	166,180	0,229	0,324	0,74	0,61	-0,85	-0,89
400+331fark_gncl_8	Uyuşumsuz	449	4	445	4,413	0,0000150	32,517	166,344	0,227	0,320	0,75	0,61	-0,84	-0,90
400+331fark_gncl_9	Uyuşumsuz	445	2	443	4,269	0,0000050	33,308	166,905	0,218	0,308	0,76	0,59	-0,82	-0,92
400+331fark_gncl_10	Δy : Δx ≥ 40 cm,Grup	443	56	387	4,231	0,0000010	33,619	167,043	0,213	0,302	0,77	0,58	-0,82	-0,73
400+331fark_gncl_11	Δy : Δx ≥ 40 cm,Grup	387	65	322	4,322	-0,0000360	36,121	166,373	0,176	0,249	0,59	0,50	-0,46	-0,57
400+331fark_gncl_12	Δy : Δx ≥ 20 cm	322	115	207	4,293	-0,0000380	36,280	166,495	0,139	0,197	0,31	0,30	-0,26	-0,29
400+331fark_gncl_13	Δy : Δx ≥ 20 cm	207	67	140	4,086	-0,0000330	36,075	167,436	0,099	0,140	0,21	0,18	-0,17	-0,20
400+331fark_gncl_14	Δy : Δx ≥ 15 cm	140	2	138	4,064	-0,0000230	35,409	167,589	0,074	0,104	0,17	0,13	-0,13	-0,17
400+331fark_gncl_15	Δy : Δx ≥ 15 cm	138	9	129	4,048	-0,0000220	35,309	167,668	0,073	0,103	0,16	0,13	-0,13	-0,14
400+331fark_gncl_16	Δy : Δx ≥ 15 cm	129	4	125	4,122	-0,0000230	35,386	167,323	0,069	0,097	0,16	0,13	-0,10	-0,13
400+331fark_gncl_17	Δy : Δx ≥ 15 cm	125	0	125	4,144	-0,0000220	35,287	167,237	0,067	0,094	0,14	0,13	-0,10	-0,13

SELECTED HELMERT SIMILARITY TRANSFORMATIONS SATISFYING THE REGULATION IMPOSED CONSTRAINTS

IQC

		TRANSFOR	MATION P	ARAMETE	RS		ADJ. ST/	ATISTCS
2D HSTs	а	b	cy (∆y) (m)	cx (∆x) (m)	<mark>∆ ppm</mark> SCALE	ROTATION (o.) (grad)	mo (m)	mp (m)
EK6.25 102 ONEL II-12>0,15	1,000004103072	2.39817431856064E-07	34,855	167,462	4.103 ppm (1:243719)	-0,000015	0,065	0,092
EK6.34 114 ONEL III-6>0,15	1,000004073625	1.19048737803999E-06	39,065	167,184	4.074 ppm (1:245481)	-0,000076	0,100	0,141
EK6.35 107 ONEL III-7>0,15	1,000004032359	1.13143261648139E-06	38,830	167,384	4.032 ppm (1:247993)	-0,000072	0,079	0,111
EK6.42 136 ONEL IV-6>15CM	1,000004024194	5.16007741719758E-07	36,112	167,690	4.024 ppm (1:248496)	-0,000033	0,077	0,109
EK6.64 TV132 VI-4>0.15m	1,000004074489	-0,000000379536415569	32,111	167,852	4.074 ppm (1:245429)	0,000024	0,075	0,106
EK6.65 TV124 VI-5>0.15m	1,000004014207	-0,000000349515641749	32,275	168,100	4.014 ppm (1:249115)	0,000022	0,069	0,097
EK6.66TGBÇ VII-1 143	1,000004028843	6.57464520521047E-07	36,738	167,598	4.029 ppm (1:248210)	-0,000042	0,081	0,115
EK6.67TGBÇ VII-2 132	1,000004073175	6.37117179743849E-07	36,631	167,412	4.073 ppm (1:245508)	-0,000041	0,073	0,104
EK6.69 TGBÇ 140 VIII-1	1,000004012005	5.09409810501002E-07	36,083	167,744	4.012 ppm (1:249251)	-0,000032	0,082	0,117
EK-6.71 TGBÇ 127 VIII-3	1,000004004254	5.23520330090384E-07	36,150	167,771	4.004 ppm (1:249734)	-0,000033	0,077	0,109
EK6.75 TGBÇ 93 VIII-7	1,000004116881	3.01798707420228E-07	35,138	167,375	4.117 ppm (1:242902)	-0,000019	0,059	0,083
EK-6.77 TGBÇ 2005.0 140 IX-1	1,000004158667	6.68304777802978E-07	36,466	166,925	4.159 ppm (1:240461)	-0,000043	0,104	0,147
EK-6.89 TGBÇ 2005.0 93 IX-13	1,000004258497	2.5924527133404E-07	34,629	166,659	4.258 ppm (1:234824)	-0,000017	0,057	0,080
EK-6.104 TV+TG BÇ140 X-14	1,000004063769	3.62475890535616E-07	35,409	167,589	4.064 ppm (1:246076)	-0,000023	0,074	0,104
EK-6.107 TV+TGBÇ125 X-17	1,000004143982	3.40858863204587E-07	35,287	167,237	4.144 ppm (1:241313)	-0,000022	0,067	0,094
EK-6.114 TV+TG 140 XI-6	1,000004077059	4.19891266647572E-07	35,662	167,493	4.077 ppm (1:245274)	-0,000027	0,076	0,107
EK-6.118 TV+TG 142 XII-3	1,000004004438	4.47044115224035E-07	35,810	167,801	4.004 ppm (1:249722)	-0,000028	0,077	0,109
EK-6.120 TV+TG BÇ 147 XIII-1	1,000003978227	5.81480170896947E-07	36,418	167,855	3.978 ppm (1:251368)	-0,000037	0,083	0,117
EK-6.122 TV+TG 139 XIII-3	1,000003999268	5.59127692436633E-07	36,311	167,770	3.999 ppm (1:250045)	-0,000036	0,076	0,108
EK-6.124 TV+TG 146 XIII	1,000003969571	7.3609270510578E-07	37,106	167,840	3.970 ppm (1:251916)	-0,000047	0,106	0,150

EXPERIMENTAL RE-DESIGN OF JGCPs SET TO PROVIDE THE BEST POSSIBLE COVERAGE FOR THE PROJECT AREA

		рт	NULL	ТДА	NS. PARA	NAETED		STATIS	TICS		Differer	nces	
		PT	NU.	I NA	INJ. PARA)	JIAIIS	nics.	Maximum		Maximum Minir	
SOLUTION No:	ELIMINTN	JGCP	REJT	<mark>∆ ppm</mark> scl	^{ROTATAT} (α) (grad)	cy (∆y) (m)	cx (∆x) (m)	mo (m)	mp (m)	∆y(m)	∆x(m)	∆y(m)	∆x(m)
TV+TG BÇ 146 XIII-1	∆y:∆x>? m	146	8	3,97	-0,000047	37,106	167,84	0,106	0,15	0,30	0,34	-0,38	-0,31

EXTERNAL QUALITY CONTROLS FOR HSTs

HSTs USED FOR EXTERNAL QUALITY CONTROL HSTs USED FOR EXTERNAL QUALITY CONTROL

IQC

		TRANSFOR	MATION F	ARAMETE	RS		ADJ. ST	ATISTCS
2D HSTs	а	b	су (Ду)	сх (∆х)	∆ ppm	ROTATION	mo	mp
	a	U	(m)	(m)	SCALE	(a .) (grad)	(m)	(m)
EK6.25 102 ONEL II-12>0,15	1,000004103072	2.39817431856064E-07	34,855	167,462	4.103 ppm (1:243719)	-0,000015	0,065	0,092
EK6.34 114 ONEL III-6>0,15	1,000004073625	1.19048737803999E-06	39,065	167,184	4.074 ppm (1:245481)	-0,000076	0,100	0,141
EK6.35 107 ONEL III-7>0,15	1,000004032359	1.13143261648139E-06	38,830	167,384	4.032 ppm (1:247993)	-0,000072	0,079	0,111
EK6.42 136 ONEL IV-6>15CM	1,000004024194	5.16007741719758E-07	36,112	167,690	4.024 ppm (1:248496)	-0,000033	0,077	0,109
EK6.64 TV132 VI-4>0.15m	1,000004074489	-0,000000379536415569	32,111	167,852	4.074 ppm (1:245429)	0,000024	0,075	0,106
EK6.65 TV124 VI-5>0.15m	1,000004014207	-0,000000349515641749	32,275	168,100	4.014 ppm (1:249115)	0,000022	0,069	0,097
EK6.66TGBÇ VII-1 143	1,000004028843	6.57464520521047E-07	36,738	167,598	4.029 ppm (1:248210)	-0,000042	0,081	0,115
EK6.67TGBÇ VII-2 132	1,000004073175	6.37117179743849E-07	36,631	167,412	4.073 ppm (1:245508)	-0,000041	0,073	0,104
EK6.69 TGBÇ 140 VIII-1	1,000004012005	5.09409810501002E-07	36,083	167,744	4.012 ppm (1:249251)	-0,000032	0,082	0,117
EK-6.71 TGBÇ 127 VIII-3	1,000004004254	5.23520330090384E-07	36,150	167,771	4.004 ppm (1:249734)	-0,000033	0,077	0,109
EK6.75 TGBÇ 93 VIII-7	1,000004116881	3.01798707420228E-07	35,138	167,375	4.117 ppm (1:242902)	-0,000019	0,059	0,083
EK-6.77 TGBÇ 2005.0 140 IX-1	1,000004158667	6.68304777802978E-07	36,466	166,925	4.159 ppm (1:240461)	-0,000043	0,104	0,147
EK-6.89 TGBÇ 2005.0 93 IX-13	1,000004258497	2.5924527133404E-07	34,629	166,659	4.258 ppm (1:234824)	-0,000017	0,057	0,080
EK-6.104 TV+TG BÇ140 X-14	1,000004063769	3.62475890535616E-07	35,409	167,589	4.064 ppm (1:246076)	-0,000023	0,074	0,104
EK-6.107 TV+TGBÇ125 X-17	1,000004143982	3.40858863204587E-07	35,287	167,237	4.144 ppm (1:241313)	-0,000022	0,067	0,094
EK-6.114 TV+TG 140 XI-6	1,000004077059	4.19891266647572E-07	35,662	167,493	4.077 ppm (1:245274)	-0,000027	0,076	0,107
EK-6.118 TV+TG 142 XII-3	1,000004004438	4.47044115224035E-07	35,810	167,801	4.004 ppm (1:249722)	-0,000028	0,077	0,109
EK-6.120 TV+TG BÇ 147 XIII-1	1,000003978227	5.81480170896947E-07	36,418	167,855	3.978 ppm (1:251368)	-0,000037	0,083	0,117
EK-6.122 TV+TG 139 XIII-3	1,000003999268	5.59127692436633E-07	36,311	167,770	3.999 ppm (1:250045)	-0,000036	0,076	0,108
EK-6.124 TV+TG 146 XIII	1,000003969571	7.3609270510578E-07	37,106	167,840	3.970 ppm (1:251916)	-0,000047	0,106	0,150

PHASE 2 EQC : EQC JGCPs SET CLASSIFICATION

<u>'0' CODED EQC</u> : <u>ALL EQC JGCPs SET</u>, FORMED WITH UN-USED POINTS IN THE RELATED TRANSFORMATION,

<u>'-1' CODED EQC:</u> SET FORMED THE <u>POINTS CREATING DIFFERENCES>1.0m</u> IN '0' CODED EQC PROCESS,

<u>'A' CODED EQC : SET FORMED AFTER EXCLUSION OF '-1' CODED POINTS FROM</u> <u>'0' CODED SET,</u>

<u>'B' CODED EQC : SET FORMED BY ALL POINTS FALLING IN THE PROJECT AREA.</u>

<u>'C' CODED EQC : SET FORMED WITH THE POINTS FALLING IN THE AREA</u> DEFINED BY THE MOST OUTER POINTS OF THE RELATED TRANSFORMATION JGCPs SET

POINT AND GROUP BASED DIFFERENCE CLASSIFICATION USED FOR EQC

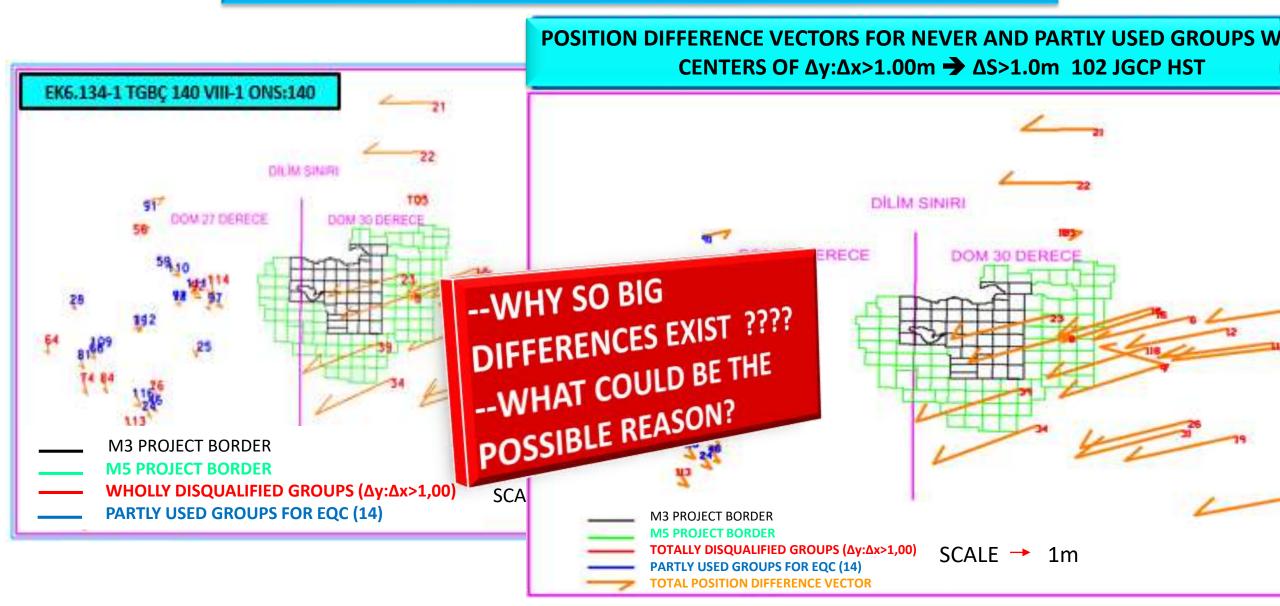
POINT AND GROUP BASED DIFF. CLASSIFICATION FOR EQC WITH 887 JGCPs SET FOR THE 146 JGCPS HST

CLASS INTER	NOP "	NOG	GROUP ID
ΔY:ΔX=<0,15	169	39	1,2,3,5,10,14,27,30,33,38,40,43,44,47,48,49,55,57,58,61,62,65,67,68,71,82,83,85,86, 87,89,90,93,94,95,101,105,106,107
0,15<∆Y:∆X<0,25	115	41	1,3,5,10,13,14,27,30,33,40,41,47,48,49,50,51,52,53,55,57,58,61,62,65,67,68,69,70,71 ,77,82,83,85,86,87,89,90,93,101,106,107
0,25<∆Y:∆X<0,50	183	51	1,2,3,4,5,13,14,25,27,30,33,38,40,41,43,44,45,46,47,48,49,50,51,52,53,55,57,63,65,6 7,68,69,70,71,77,82,83,86,87,88,90,93,95,97,99,100,101,102,105,106,108
0,50<∆Y:∆X<0,85	98	29	4,10,25,28,46,47,52,63,65,68,72,73,77,78,81,88,90,91,94,96,97, 98,99,100,102,104,108,110,112
0,85<ΔY:ΔX<1,00	26	18	24,28,59,66,73,78,79,81,94,96,97,98,104,109,110,111,112,116
ΔΥ:ΔΧ>1,0	193	29	6,7,8,9,11,12,15,16,18,19,21,22,23,26,31,34,39,42,56,64,74, 76,84,92,103,113,114,118,119
	103	18	24,25,28,46,59,66,72,78,79,81,91,94,97,109,110,111,112,116
TOTAL	887		
ΔΥ:ΔΧ>1,0	193	29	6,7,8,9,11,12,15,16,18,19,21,22,23,26,31,34,39,42,56,64,74,76,84,92,103,113,114, 118,119
	92	17	24,25,28,46,59,66,72,79,81,91,94,97,109,110,111,112,116
TOTAL	887		

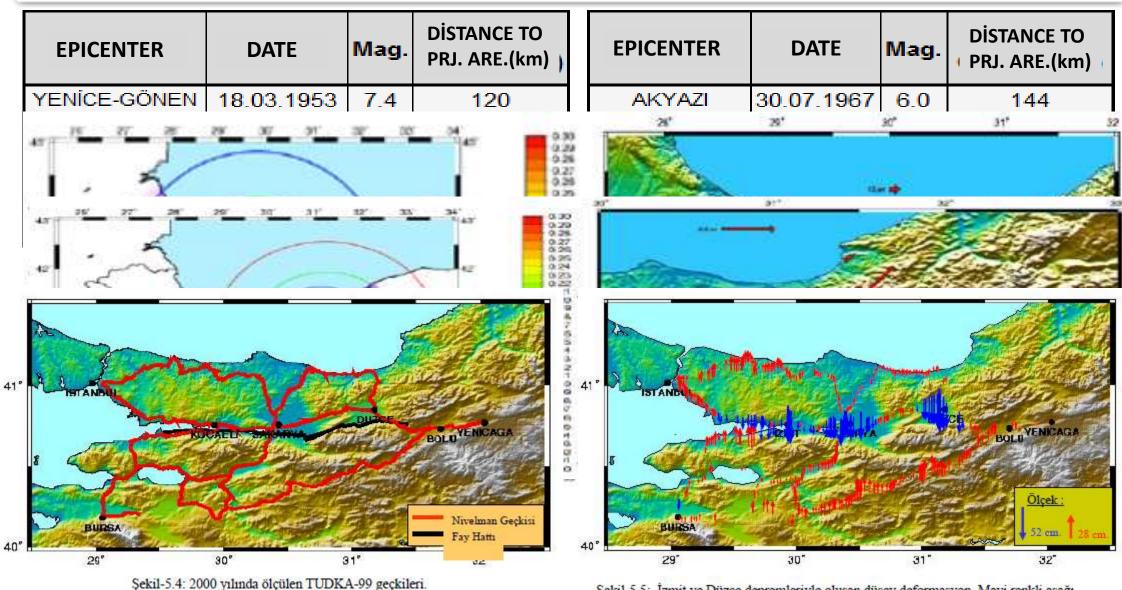
100000-747	Diffe	erences	Abs. Differences							
JGCPS:747	ΔΥ	ΔX	ΔΥ	ΔX	Δs					
MAKSİMUM	7,258	2,732	7,258	2,732	7,397					
MINIMUM	-2,011	-1,574	0,016	0,025	1,074					
MEAN	2,403	1,259	3,149	1,330	3,654					
mo	3,389	0,475	2,720	0,408	2,466					

GRPs:106	Diffe	rences	Abs. Differences			
	ΔΥ	ΔX	ABS(∆Y)	ABS(∆X)	Δs	
MAKSİMUM	7,116	2,609	7,116	2,609	7,177	
MINIMUM	-1,652	-1,247	0,063	0,077	1,074	
MEAN	2,249	1,193	2,975	1,261	3,473	
mo	3,304	0,452	2,686	0,381	2,437	

PHASE 2 '0' CODED: POINT AND GROUP BASED EQC STATISTICS FOR 140 JGCPs HST

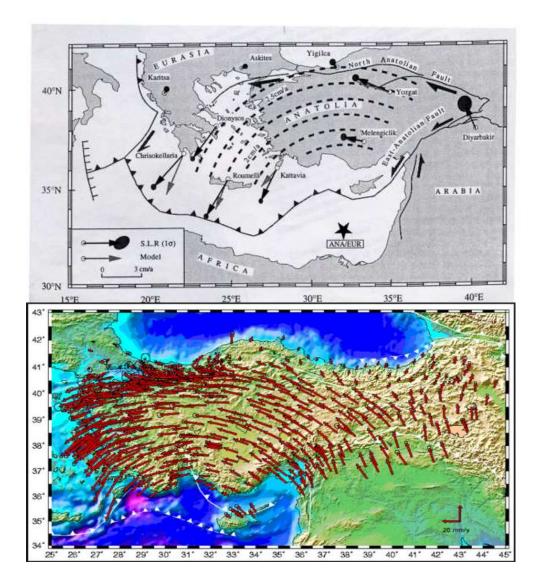

JGCPS:741	Differe	nces	Abs. Differences				
	ΔΥ	ΔX	ΔΥ	ΔX	Δs		
MAKSİMUM	7,251	2,739	7,251	2,739	7,406		
MINIMUM	-2,025	-1,538	0,028	0,016	1,045		
MEAN	2,521	1,260	3,242	1,336	3,733		
mo	3,407	0,493	2,733	0,419	2,489		

PHASE 2 '0' CODED : POINT AND GROUP BASED EQC STATISTICS FOR 146 JGCPs HST

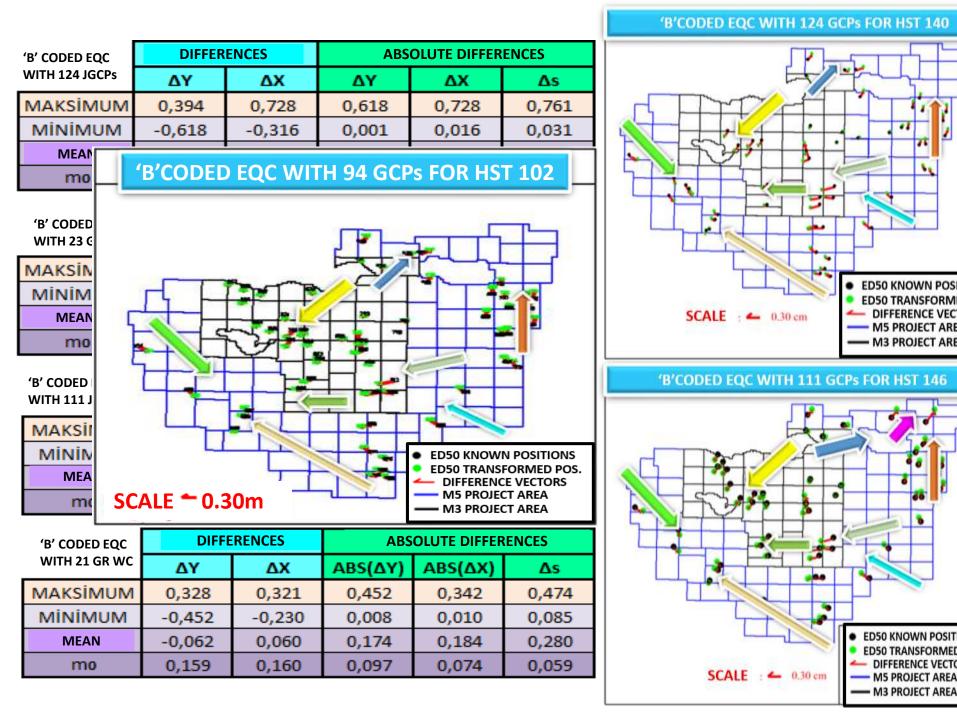


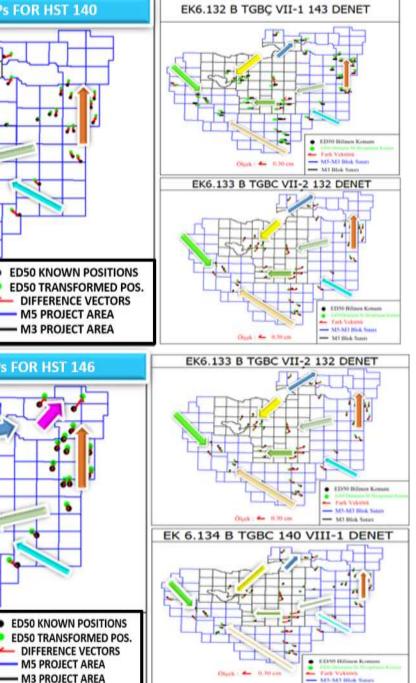
	GRPs:106	Differe	ences	Abs. Differences			
_		ΔΥ	ΔX	ABS(∆Y)	ABS(∆X)	Δs	
	MAKSİMUM	7,107	2,621	7,107	2,621	7,174	
	мілімим	-1,662	-1,220	0,061	0,082	1,105	
	MEAN	2,308	1,191	3,024	1,262	3,510	
	mo	3,319	0,460	2,696	0,393	2,457	

POSITION DIFFERENCE VECTORS FOR NEVER AND PARTLY USED GROUP'S WEIGTH CENTERS OF ∆y:∆x: ∆S>1.0m → RESPECTIVELY OF 140 & 146 &102 JGCP HSTs : PHASE 2 '-1 CODED' EQC


IMPORTANT EARTHQUAKE IN AND AROUND PROJECT AREA HAVING MAGNITUDE BIGGER THAN 6.0 AFTER 1950 (MTA, Ayhan etal, 2001)


Şekil-5.5: İzmit ve Düzce depremleriyle oluşan düşey deformasyon. Mavi renkli aşağı

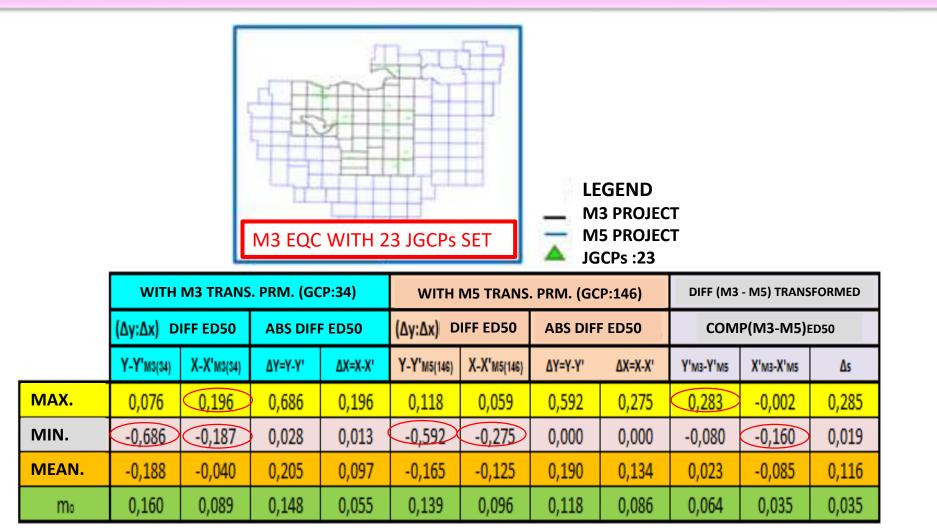

42


SIMPLE EVALUATION OF DIFFERENCES(RESIDUALS)

- Anatolian Plate westward average velocity 2.5 cm./year
- Time elapsed since Turkish Horizontal network adjustment (2015-1954= 61 Years)
- Average survey duration of Turkish National Horizontal Control Network (1953-1937=18 Year)
- Average Estimated duration elapsed since the mid of observation period (61+9=70)
- Assumption: no change in Anatolian Plate velocity field (70*2.5 cm= 175.0 cm Total Difference in 70 years)
- So a difference of 1.750m in any datum can be accepted an average displacement except co-siesmic effects and chances in the velocity field.

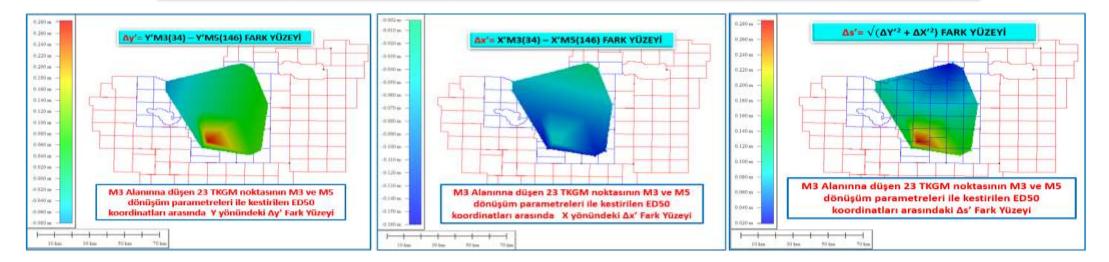
- MA Blok Seen

SOME RESULTS OF POINT BASED EQC FOR HST

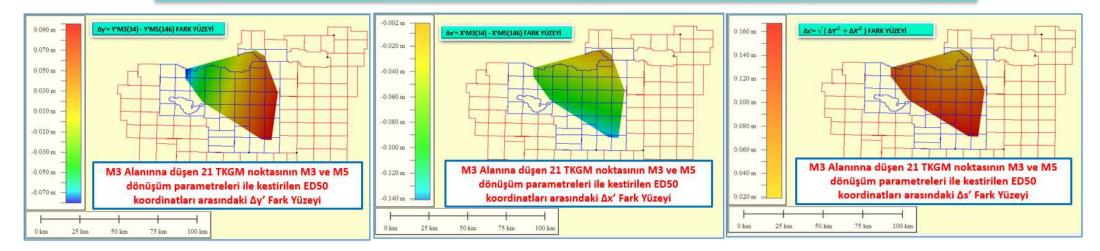

		1	0	1	A)	e ()	8)		c)
		ΔY	ΔX	ΔΥ	ΔX	ΔΥ	ΔX	ΔΥ	ΔX
EK-6.126	MAKSIMUM	7,229	2,737	0,871	0,999	0,871	0,999	0,871	0,720
0,A,B,C	MINIMUM	-6,770	-1,504	-0,976	-0,512	-0,976	-0,294	-0,619	-0,512
ONEL II-12	ORTALAMA	2,364	1,173	-0,135	0,153	-0,125	0,207	-0,054	0,026
102	6	3,698	0,592	0,237	0,276	0,226	0,257	0,184	0,173
EK-6.132	MAKSMUM	7,229	2,737	0,863	0,996	0,392	0,737	0,426	0,737
0,A,B,C	MINIMUM	-6,770	-1,504	-0,971	-0,458	-0,626	-0,299	-0,598	-0,299
TGBÇ VII-1	ORTALAMA	2,364	1,173	-0,136	0,212	-0,135	0,064	-0,101	0,090
143	70	3,698	0,592	0,243	0,264	0,192	0,180	0,186	0,147
EK-6.132	MARSIMUM	7,233	2,749	0,866	0,988	0,393	0,734	0,427	0,734
0,A,B,C	MINIMUM	-2,011	-1,544	-0,995	-0,463	-0,629	-0,302	-0,629	-0,463
TGBÇ VII-2	ORTALAMA	0,732	0,525	-0,138	0,205	-0,145	0,039	-0,099	0,011
132	=0	1,627	0,593	0,242	0,265	0,183	0,174	0,150	0,175
EK 6.134	MAKSIMUM	7,251	2,739	0,867	0,994	0,394	0,728	0,430	0,728
0,A,B,C	MINIMUM	-2,025	-1,538	-0,974	-0,480	-0,618	-0,316	-0,618	-0,480
TGBÇ VIII-1	ORTALAMA	0,738	0,512	-0,135	0,201	-0,141	0,020	-0,086	0,002
140	m0	1,630	0,590	0,246	0,273	0,196	0,172	0,152	0,182
EK6.145	MAKSIMUM	7,258	2,732	0,852	0,978	0,419	0,724	0,427	0,724
0,A,8,C	MINIMUM	-2,011	-1,574	-0,972	-0,464	-0,622	-0,275	-0,622	-0,464
TV+TG XIII	ORTALAMA	0,734	0,519	-0,134	0,197	-0,125	0,033	-0,090	0,004
146		1,632	0,595	0,244	0,265	0,182	0,179	0,179	0,169
	MAKSIMUM	7,258	2,749	0,871	0,999	0,871	0,999	0,871	0,737
	MINIMUM	-6,770	-1,574	-0,995	-0,512	-0,976	-0,316	-0,629	-0,512
SONUC	MAK, ORT	2,364	1,173	-0,134	0,212	-0,126	0,207	-0,084	0,090
ISTATISTIKLER	MAK. MO	3,698	0,595	0,246	0,276	0,226	0,257	0,186	0,182
	MIN ORT.	0,732	0,512	-0,138	0,183	-0,145	0,020	-0,101	0,002
	MIN Mo	1,627	0,590	0,237	0,264	0,182	0,172	0,179	0,147

TO CONCLUDE :

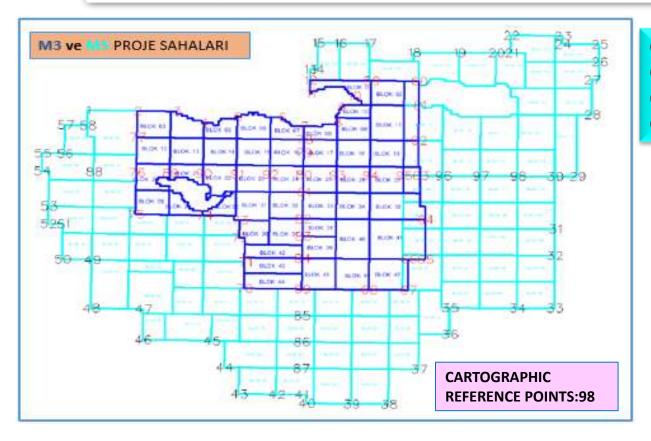
- ALTHOUGH THERE ARE BIGGER RESIDUALS FOR ΔΥ:ΔΧ THAN 0.15 m; BEST RESULTS ARE ACHIEVED WITH THE HST OF 146 JGCPs , FROM THE POINTS OF ;
 - a) NUMBER OF JGCPs,
 - b) DISTRIBUTION TO PROJECT AREA,
 - c) THE BEST m0 VALUE
- ALTHOUGH MAX AND MIN VALUES FOR ΔY:ΔX ARE IN THE RANGE OF -0.622<Δy<0.427
 - -0.464<∆x<0.724


EQC PHASE 3 : GEODETIC EQC FOR M3 PROJECT AREA

- 23 GCPs COMMON IN EACH DATUM (ITRF96 AND ED50) DEFINED NOT USED IN M3 HST TRANSFORMATION .
- EQC PROCESS APPLIED TO THIS SET WITH HST M3(34) AND M5(146) transformation parameteres seperately



EQC PHASE 3 : GEODETIC EQC FOR M3 PROJECT AREA

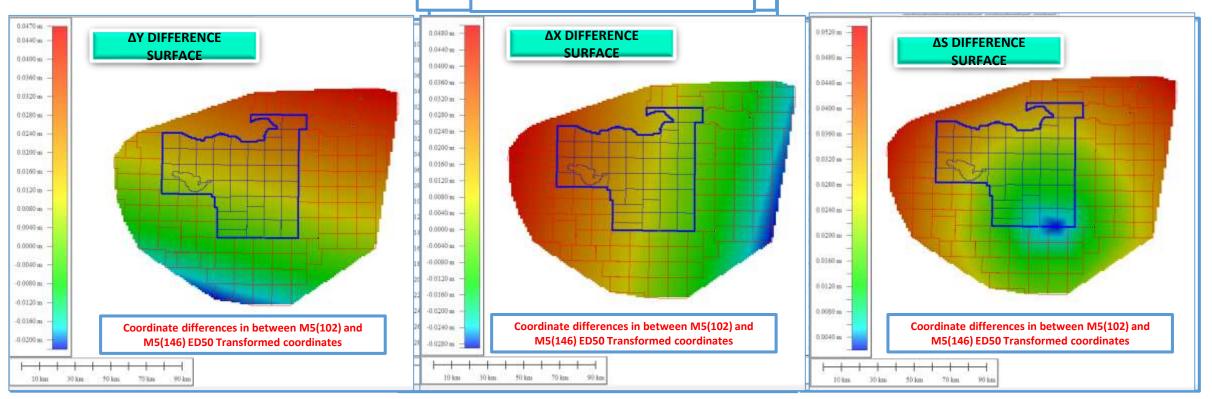

ΔY, ΔX, ΔS DIFFERENCES DISTRIBUTION TO PROJECT AREA FOR 23 GCPs

ΔY, ΔX, ΔS DIFFERENCES DISTRIBUTION TO PROJECT AREA FOR 21 GCPs

CARTOGRAPHIC CONTROLS

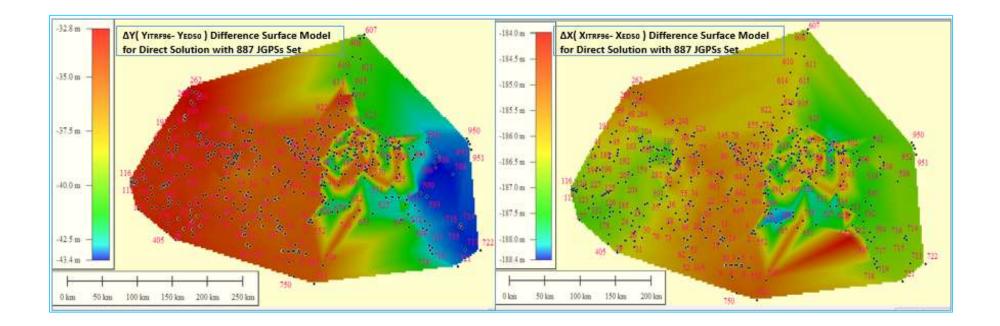
CARTOGRAPHIC CONTROL POINTS IN M3/M5 PROJECT AREA: 45/98 OVER M3/M5 EXTERNAL BORDERS : 45/58 POINTS OVER M3/M5 WEST-EAST DIRECTION: 10/17 POINTS OVER NORTH-SOUTH DIRECTION : 9/14 POINTS

Classification of the M3(34)_{ED50} – M5(146)_{ED50} transformed coordinate differences


HELMERT	M3(34)	M3(34)ED50-M5(146)ED50				
SIMILARITY TRANS.	d∆Y	d∆X	d∆s			
∆y:∆x<0,15	90	62	39			
0,15<∆y:∆x<0,25	8	25	39			
0,25<∆y:∆x<0,50		11	20			
TOPLAM	98	98	98			

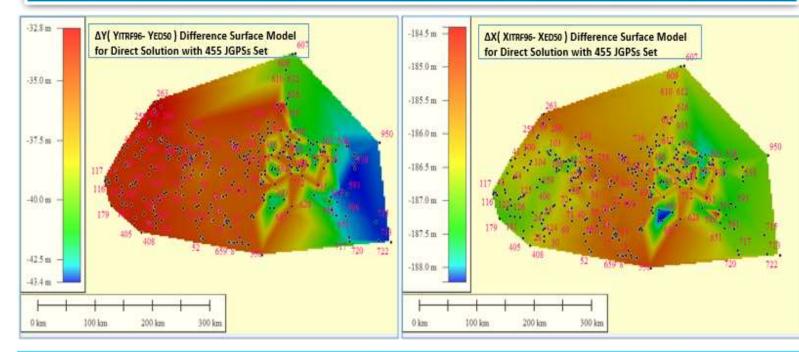
CCPS 98	HELMERT SIMILARITY TRANS. M3(34)ED50-M5(146)ED50				ED50 DIFFERENCES OF TRANS. M5(102)-M5(146)			HELMERT SIMILARITY TRANS. M3(34)ED50-M5(102)ED50		
	Δу	Δx	Δs	Δу	Δx	Δs	Δy	Δx	Δs	
MAXIMUM	0,228	0,091	0,282	0,047	0,050	0,053	0,224	0,115	0,296	
MINIMUM	-0,184	-0,276	0,007	-0,022	-0,029	0,002	-0,193	-0,288	0,002	
MEAN	0,026	-0,097	0,159	0,013	0,009	0,030	0,013	-0,106	0,165	
m0	0,088	0,080	0,066	0,015	0,017	0,011	0,088	0,089	0,069	

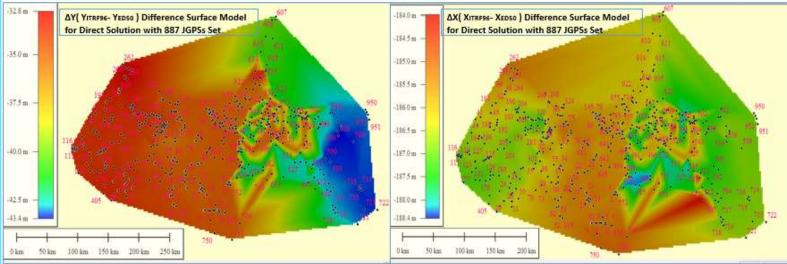
Cartographic Control : DIFFERENCE SURFACE OF M3(102)-M5(146) IN ED50


3

TÜN M5(102)-M5(146) CCPS 98

CCPS 98	HELMERT SIMILARITY TRANS. M3(34)ED50-M5(146)ED50				ED50 DIFFERENCES OF TRANS. M5(102)-M5(146)			HELMERT SIMILARITY TRANS. M3(34)ED50-M5(102)ED50			
	Δy	Δx	Δs	Δу	Δx	Δs	Δy	Δx	Δs		
MAXIMUM	0,228	0,091	0,282	0,047	0,050	0,053	0,224	0,115	0,296		
MINIMUM	-0,184	-0,276	0,007	-0,022	-0,029	0,002	-0,193	-0,288	0,002		
MEAN	0,026	-0,097	0,159	0,013	0,009	0,030	0,013	-0,106	0,165		
m0	0,088	0,080	0,066	0,015	0,017	0,011	0,088	0,089	0,069		


DIRECT SOLUTION WITH SPLINE FUNCTION (JGCPs:887)



WHOLE SET :887	ΔY (YITRF-YED50)	ΔX=(XITRF-YED50)
MAKSİMUM	-32,768	-183,983
MINIMUM	-43,445	-188,397
ORTALAMA	-36,058	-186,211

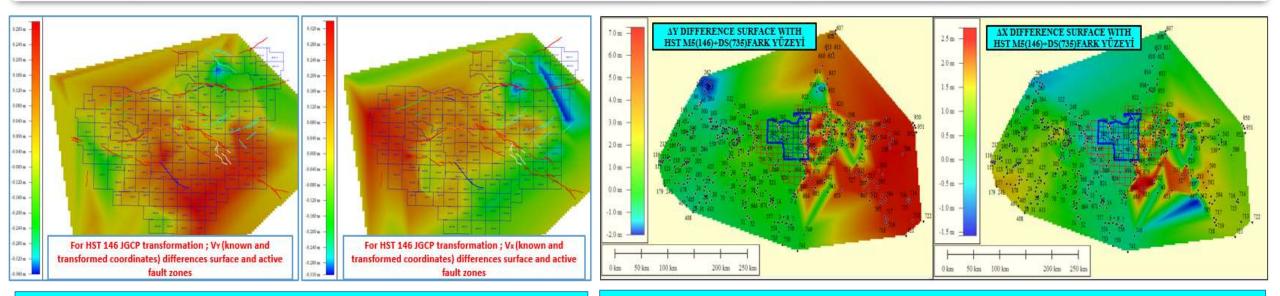
DIRECT SOLUTION WITH SPLINE FUNCTION NUMBER OF JGCPS:887 (WHOLE SET)

GEODETIC EQC FOR DIRECT SOLUTION

SET TY	'PE			NO	DF POI	NTS	<mark>5</mark>
TRANSFORM	MA	TIO	N		455		
EQC	• •				432		
TOTAL					887		
TRANS. SUB-S	ET		Δ١	(Δ	х
MAXIMUM		-3	32,7	791	-1	184	,400
MINIMUM		-4	13,4	145	-1	188	,221
MEAN		-3	86,0	088	-1	186	,205
mo		1	L,8	37	0,573		573
EQC SUB-SET		ΔΥ		ΔΧ		(
MAXIMUM		-32,768		-183,983			
MINIMUM		-43,429		-188,397			
MEAN		-36,	028		-1	86,	217
m₀		1,7	91			0,5	58
EQC STATISTICS		ITRF96	-ED50)		ED5	50
		′'(m)	۵	('(m)	Y- <u>Y (</u> m)	X- <u>X (</u> m)
MAXIMUM	-33	3,004	-18	5,309	6,651		2,259
MINIMUM	-43	3,317	-18	7,947	-5,011		-2,956
MEAN	-3	5,919	-18	6,204	0,051		0,014

WITH 887 POINTS

GEODETIC EQC FOR DIRECT SOLUTION

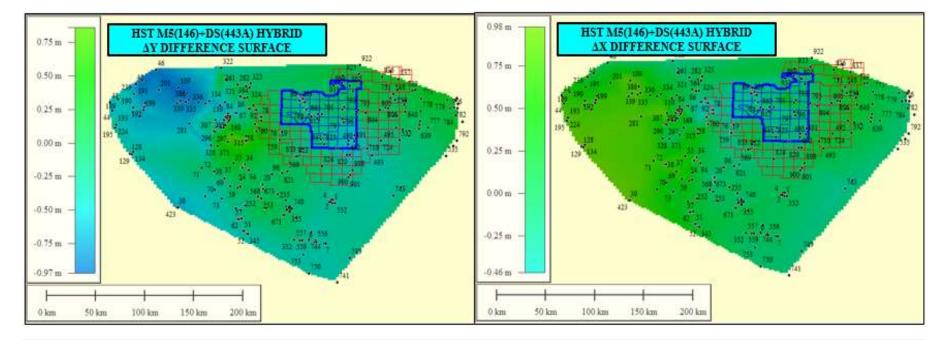

What was remarklable for the EQC process is

- For all EQC points ; <u>the differences in between known and</u> <u>corrected coordinates were 0.00.</u>
- So this <u>a very impressive result</u>

HYBRID SOLUTION

- The basic philosopy of this method is the stochastic process approach to the problem.
- Hybrid solution is planned as a two phase process.
- First phase is the Helmert Similarity transformation.
 - The purpose of this phase is to extract the deterministic part from the data set.
 - <u>The residuals are assumed as the stochastic part</u> of the process which signals could be detected via modelling «pre,co,post seismic Earthquake affects» or «other possible signals on data».
 - \circ If this signals can be filtered the rest will be the random part.
- Second phase is the Direct Solution.
 - It is decided to proceed without a detailed investigation on data quality, which is beyond the purpose of this project.
 - So the residuals are modelled with spline functions, to minimize the final differences for M5 project area.

HYBRID SOLUTION ("O Coded" Phase 1(146)&Phase 2(735))

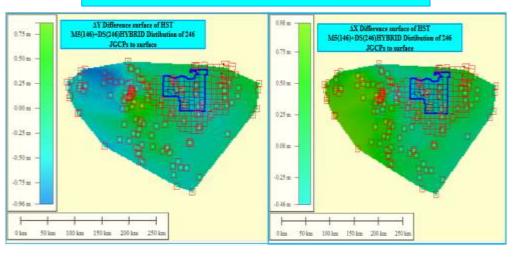

HYBRID SOLUTION HST M5(146) + DS(735) Δy:Δx difference surfaces

HST M5(HST M5(146)+ DÇ(735) HYBRID : POINT AND GROUP BASED CLASSIFICATION								
SINIF ARALIĞI	NOKTA SAY.	GRP.SAY	BU SINIFTAKİ GRUP NUMARALARI						
ΔY:ΔX=<0,15	45	22	3,10,14,33,49,55,57,58,61,67,68,71, 82,83, 85,89,94,95,101,105,106,107						
0,15<∆Y:∆X<0,25	103	37	1,3,5,10,13,14,27,33,40,41,47,48,49,50,51,52,53,55,57,58, 61,62,65,67,68,69,70,71,82,83,86,87,89,93,101,106,107						
0,25<∆Y:∆X<0,50	173	50	1,2,3,4,5,13,14,25,27,30,33,38,40,41,43,44,45,46,47,48,49,50,51,52,53,55,57, 63,65,67,68,69,70,71,77,82,83,86,87,88,90,95,97,99,100,101,102,105,106,108						
0,50<ΔY:ΔX<0,85	97	29	4,10,25,28,46,47,52,63,65,68,72,73,77,78,81,88,90, 91,94,96,97,98,99,100,102,104,108,110,112						
0,85<ΔΥ:ΔΧ<1,00	25	17	24,28,59,66,73,78,79,81,94,96,97,98,104,109,110,111,116						
ΔΥ:ΔΧ>1,0	191	29	6,7,8,9,11,12,15,16,18,19,21,22,23,26,31,34, 39,42,56,64,74,76,84,92,103,113,114,118,119						
	101	17	24,25,28,46,59,66,72,78,79,81,91,97,109,110,111,112,116						
TOPLAM	735								

Active faults in Project area and HST M5(146) Δy:Δx difference surfaces

Farklar	(ED50)	M.Farklar(ED50)		
ΔΥ=Υ-Υ'	∆X=X-X'	ΔΥ=Υ-Υ'	ΔX=X-X'	
7,258	2,732	7,258	2,732	
-2,011	-1,574	0,007	0,001	
0,882	0,618	1,416	0,702	
1,900	0,618	1,718	0,556	
	ΔΥ=Υ-Υ' 7,258 -2,011 0,882	7,258 2,732 -2,011 -1,574 0,882 0,618	ΔΥ=Υ-Υ' ΔX=X-X' ΔΥ=Υ-Υ' 7,258 2,732 7,258 -2,011 -1,574 0,007 0,882 0,618 1,416	

HYBRID SOLUTION ("A Coded - exclusion of Δy:Δx>1.0 Points- » : EQC Aplication" : 443 JGCPs)


HYBRID SOLUTION HST M5(146) + DS(443) Δy:Δx difference surfaces

1	HST M5(14	46)+DS(4	43) HYE	BRID:POINT AND GROUP BASED CLASSIFICATION
	CLASS INTERVAL	NOP	NOG	GRUP ID
	ΔY:ΔX=<0,15	45	19	3,10,14,33,49,55,57,58,61,67,68,82,83,85,89,94,95,105,106,
	0,15<ΔY:ΔX<0,25	103	37	1,3,5,10,13,14,27,33,40,41,47,48,49,50,51,52,53,55,57,58,61,62,65,67,6 8,69,70,71,82,83,86,87,89,93,101,106,107
	0,25<ΔΥ:ΔΧ<0,50	173	50	1,2,3,4,5,13,14,25,27,30,33,38,40,41,43,44,45,46,47,48,49,50,51,52,53, 55,57,63,65,67,68,69,70,71,77,82,83,86,87,88,90,95,97,99,100,101,102, 105,106,108
	0,50<ΔY:ΔX<0,85	97	29	4,10,25,28,46,47,52,63,65,68,72,73,77,78,81,88,90,91,94,96,97,98,99,1 00,102,104,108,110,112
	0,85<ΔY:ΔX<1,00	25	17	24,28,59,66,73,78,79,81,94,96,97,98,104,109,110,111,116
	TOPLAM	443		

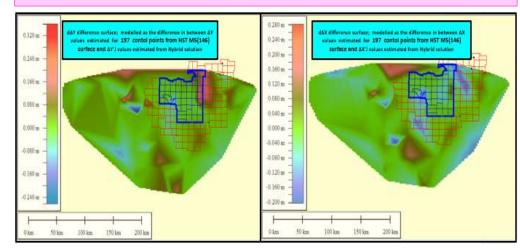
HYBRID SLTN.	DIFFEREN	CES (ED50)	ABS DIFFERNCES(ED50)			
JGCPS:735	ΔΥ=Υ-Υ'	∆X=X-X'	ΔΥ=Υ-Υ'	∆X=X-X'		
MAXIMUM	0,862	0,978	0,972	0,978		
MINIMUM	-0,972	-0,464	0,007	0,001		
MEAN	-0,131	0,197	0,264	0,289		
m0	0,244	0,265	0,158	0,199		

HYBRID SOLUTION ("A Coded - exclusion of Δy:Δx>1.0 Points- » : EQC : 443 JGCPs")

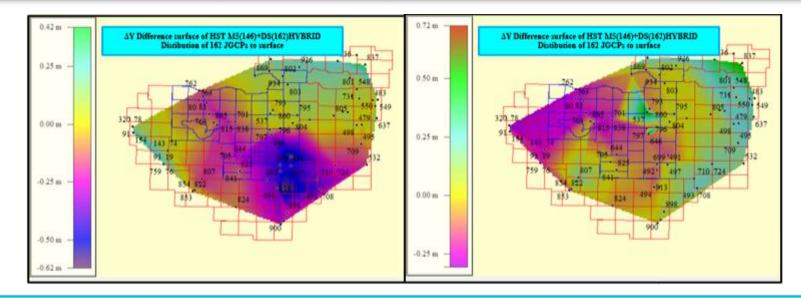
HST M5(146)+ DS (246 A)

HYBRID SLTN.	DIFFERENC	CES (ED50)	ABS DIFFERNCES(ED50)			
JGCPS:246	ΔΥ=Υ-Υ'	ΔX=X-X'	ΔΥ=Υ-Υ'	∆X=X-X'		
MAXIMUM	0,862	0,978	0,964	0,978		
MINIMUM	-0,964	-0,464	0,008	0,001		
MEAN	-0,152	0,222	0,291	0,311		
m0	0,263	0,276	0,169	0,209		

SINIF ARALIGI	NOKTA SAY.	GRP.SAY	BU SINETAKÎ GRUP NUMABALARI
∆Y:∆X=<0.15	17	17	5,10,14,33,49,55,57,58,67,68,82,83,85,94,95,105,106
0.15444440,25	46	37	1,3,5,10,13,14,27,33,40,41,47,48,49,50,51,52,53,55,57, 58,61,62,65,67,08,99,70,71,82,83,86,87,89,93,101,106,107,
0,25×6Y ΔX×0,50	107	47	1,3,4,5,14,25,27,50,33,38,40,41,43,44,45,46,47,48,49,50,51,52,53,55,57,63 65,67,68,69,70,71,82,83,86,87,88,90,95,97,99,100,101,102,105,106,108
0,50-4444-0,85	63	27	4,10,25,28,46,47,52,63,65,68,72,73,77,78,81, ##,91,94,96,97,98,99,100,102,104,108,110
0,85<5Y 48<3,00	18	15	24,28,50,66,73,78,79,81,94,97,98,104,110,111,116
TOPLAM	246		


HST M5(146)+DS(246 A) Hybrid Solution Statistics and seperation of $\Delta y:\Delta x$ values to class intervals.

HYBRID SLTN.	Diff HST	M5(146)	Diff DS(24	6) Surface	Diff From Positions		
EQC JGCPS:188	ΔΥ	ΔΧ	ΔΥ'	ΔΧ'	d∆Y=Yi-Y'j	d∆X=Xi-X'j	
MAXIMUM	0,833	0,967	0,815	0,964	0,361	0,282	
MINIMUM	-0,972	-0,464	-0,955	-0,404	-0,263	-0,203	
MEAN	-0,105	0,166	-0,135	0,169	0,024	0,000	
m0	0,218	0,249	0,191	0,242	0,050	0,042	

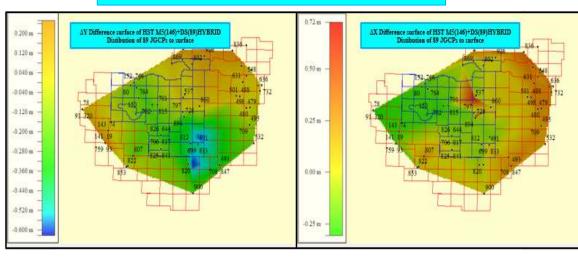

EQC POINT AND GROUP BASED CLASSIFICAATION						
CLASS INTERVAL	NOP	NOG	GROUP ID			
∆Y:∆X=<0,15	167	63	1,2,3,4,5,10,13,14,25,27,30,33,40,41,43,44,45,46,47,48,49,50,51,52,53,55, 57,58,61,62,65,66,67,68,69,70,72,73,78,81,82,83,85,86,87,89,90,95,96, 97,98,99,100,102,104,105,106,107,108,109,110,111,112			
0,15<ΔΥ:ΔΧ<0,25	15	13	3,14,33,58,61,67,83,85,93,71,88,96			
0,25<∆Y:∆X<0,50	6	5	73,96,99,101,107			
Out of Surface	9					
TOPLAM	197					

EQC WITH 197 POINTS FOR HST M5(146)+DS(246 A) Hybrid Solution Statistics and seperation of $\Delta y:\Delta x$ values to class intervals.

EQC WITH 197 POINTS FOR HST M5(146)+ DS (246 A)

HYBRID SOLUTION ("B Coded : 162 JGCPs") - exclusion of the Points out of M5 Project Boundry-

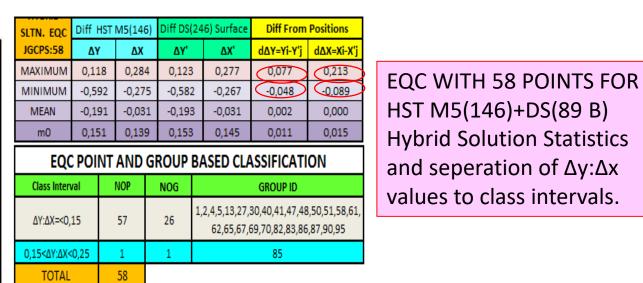
HYBRID SOLUTION HST M5(146) + DS(162 B) Δy:Δx difference surfaces

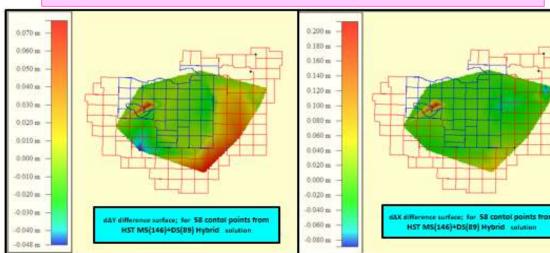

HYBRID SLTN.	DIFFEREN	CES (ED50)	ABS DIFFERNCES(ED50)			
JGCPS:162	ΔΥ=Υ-Υ'	ΔX=X-X'	ΔΥ=Υ-Υ'	∆X=X-X'		
MAXIMUM	0,419	0,724	0,622	0,724		
MINIMUM	-0,622	-0,305	0,008	0,001		
MEAN	-0,124	-0,003	0,203	0,177		
m0	0,179	0,177	0,115	0,093		

POINT AND GROUP BASED CLASSIFICATION						
CLASS INT	NOP	NOG	GROUP ID			
ΔΥ:ΔΧ=<0,15	19	7	58,61,67,82,83,85,95			
0,15<∆Y:∆X<0,25	59	27	1,3,5,10,13,27,40,41,47,48,50,51,55,58, 61,62,65,67,68,69,70,71,82,83,86,87,93			
0,25< <u>Δ</u> Υ: <u>Δ</u> X<0,50	76	29	1,2,4,5,13,27,30,38,40,41,47,48,50,51,53, 57, 65,67,69,70,71,77,82,83,86,87,90,95,100			
0,50<ΔY:ΔX<0,85	8	6	4,10,47,65,77,90			
TOPLAM	162					

HST M5(146)+DS(162 B) Hybrid Solution Statistics and separation of $\Delta y:\Delta x$ values to class intervals.

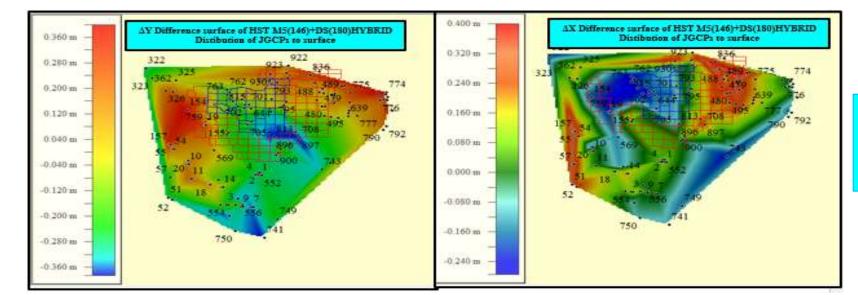
HYBRID SOLUTION ("B Coded EQC": 89 DS+58 EQC) - exclusion of the Points out of M5 Project Boundry-


HST M5(146)+ DS (89 B)


HYBRID SLTN		DIFF.	(ED50)	ABS DIFF.(ED50)		
JGCPS:89	ΔY	=Y-Y'	ΔX=X-X'	Δ Υ= Υ-Υ'	∆X=X-X'	
MAXIMUM	0,	0,252 0,724		0,622	0,724	
MINIMUM	-0	,622	-0,305	0,008	0,001	
MEAN	-0	,106	0,015	0,194	0,185	
m0	0,	183	0,186	0,112	0,090	
POINT A	ND GI	ROUP	BASED CL	ASSIFICAT	ΓΙΟΝ	
POINT A CLASS INTERVAL	ND GI		BASED CL	ASSIFICAT GROUP ID	ΓΙΟΝ	
CLASS INTERVAL	NOP	NOG	58, 1,3,5,10,13,	GROUP ID	95 50,51,55,58,	
CLASS INTERVAL ΔY:ΔX=<0,15	NOP 10	NOG 7	58, 1,3,5,10,13, 61,62,65,6 1,2,4,5,13	GROUP ID .61,67,82,83,85, 27,40,41,47,48,5	95 50,51,55,58, 3,86,87,93 48,51,53,	
CLASS INTERVAL ΔΥ:ΔX=<0,15	NOP 10 37	NOG 7 26	58, 1,3,5,10,13, 61,62,65,6 1,2,4,5,13	GROUP ID 61,67,82,83,85, 27,40,41,47,48,5 8,69,70,71,82,8 ,27,30,38,40,41	95 50,51,55,58, 3,86,87,93 48,51,53,	

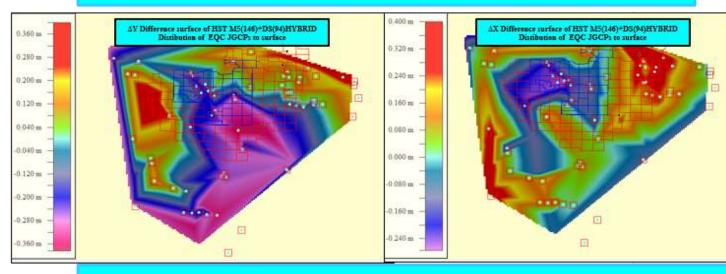
89 DS + 58 EQC = 147 HS

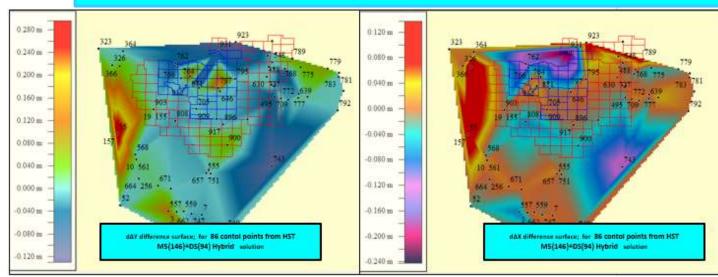
HST M5(146)+DS(89 B) Hybrid Solution Statistics and seperation of $\Delta y:\Delta x$ values to class intervals.



EQC WITH 58 POINTS FOR HST M5(146)+ DS (89 B)

HYBRID SOLUTION ("C Coded ": HST(146)+HS(213))


HYBRID SLT	N D	IFF.(E	D50)	ABS DI	FF.(ED50)	POIN	TAND	GROUI	Р ВА	SED CLASSIFICATION	
IT DIAD SET	N. 0		550	705 01	1.(2030)	CLASS INTERVAL	NOP	NO	G	GROUP ID	
JGCPS:21	3 ΔY=Y	'-Y' /	∆X=X-X'	ΔY=Y-Y	' ∆X=X-X'	ΔY:ΔX=<0,15	19	8		3,14,33,49,57,58,89,95	
MAXIMUN	1 6.46	53	2,074	6,463	2,074	0,15<ΔY:ΔX<0,25	76	25	; 1	1,3,5,13,14,27,33,40,41,47,48,49,50,57, 58,62,65,71,85,86,87,89,93,101,107	
MINIMUN	1 1.5	46	-0,464	0,005	0,001	0,25< <u>ΔY:</u> ΔX<0,50	96	27		1,2,3,5,13,14,27,30,33,38,40,41,43,44,4 7,48,49,50,57,65,71,77,86,87,90,95,101	Δy:Δx>0.40m : 33
MEAN	0,24	17	0,154	0,565	0,247	0.50<42:42<0.85	5	4		47,65,77,90	Points are excluded
						ΔΥ:ΔΧ>1,0	17	2		8, 103	Tomes are excluded
m0	0,68	35	0,248	0,675	0,196	TOPLAM	213				from 213 JGCPs set
SLTN.	DIFF.	(ED50))	ABS DIFF	.(ED50)	PO	POINT AND GROUP BASED STATISTICS			BASED STATISTICS	
JGCPS:180	ΔY=Y-Y'	ΔX=X	X-X' 🛛	Y=Y-Y'	∆x=x-x'	CLASS INTERVAL	NOP	NOG		GROUP ID	
						ΔY:ΔX=<0,15	19	8		3,14,33,49,57,58,89,95	
MAXIMUM	0,399			0,399	0,400	0,15<ΔY:ΔX<0,25	76	25	1,	3,5,13,14,27,33,40,41,47,48,49,50,	
MINIMUM	-0,386	-0,2	275	0,005	0,001	0,15<07.07.07.0,25	/0	25	57,	58,62,65,71,85,86,87,89,93,101,107	
MEAN	-0,058	0,0)57	0,177	0,153	0,25<∆Y:∆X<0,50	85	27		3,5,13,14,27,30,33,38,40,41,43,44,47, ,49,50,57,65,71,77,86,87,90,95,101	
m0	0,175	0,1	L44	0,093	0,085	TOPLAM	180				


No points having Δy:Δx>0.40m No relevant points for EQC

HYBRID SOLUTION ("C Coded ": HST(146)+HS(180))

HYBRID SOLUTION HST (146)+ HS(96)

EQC WITH 84 POINTS OF HYBRID SOLUTION HST (146)+ HS(96)

	HYBRID SLTN. EQC JGCP5:84	Diff HST	M5(146)	Diff DS(24	6) Surface	Diff From Positions		
		ΔY	ΔX	ΔΥ'	ΔΧ'	d∆Y=Yi-Y'j	d∆X=Xi-X'j	
	MAXIMUM	0,378	0,391	0,303	0,301	0,296	0,137	
	MINIMUM	-0,386	-0,275	-0,380	-0,263	-0,130	-0,242	
	MEAN	-0,049	0,051	-0,064	0,067	0,006	-0,005	
	m0	0,168	0,145	0,149	0,134	0,035	0,027	

POINT AND GROUP BASED CLASSIFICATION						
CLASS INTERVAL	NOP	NOG	GROUP ID			
ΔY:ΔX=<0,15	76	30	1,2,3,5,13,14,27,30,33,38,40,41,43,47,48,49, 50,57,58,62,65,71,85,86,87,89,90,93,101,107			
0,15<ΔY:ΔX<0,25	2	2	58,95			
0,25<∆Y:∆X<0,50	2	2	44, 71			
Yüzey dışı	6					
TOPLAM	86					

CONCLUSIONS

When TNHCN defined in ED50 datum; current concepts of

- \odot Plate Tectonics,
- \circ Velocity field,
- Standart Epoch,
- Observation Epoch,
- \circ Frame,
- Displacement etc.

were not considered.

- So all coordinates are assumed <u>static</u>, since ED50 introduced.
- With the introduction of ITRF96 datum in 2005, above concepts have found a vast use capability in geodetic community together with the other geosiences,

CONCLUSIONS

So we have to remember ;

- Used JGCPs sets for transformations -which are common and positions known in both datum- are not comparable to each other ; Cause all ITRF96 GCPs are corrected for the velocity field, while ED50 GCPs are kept un-changed since 1954.
- So, during transformation and EQC process, GCPs or groups having differences ≥1m are observed and excluded from JGCPs set, but if only seismic velocity field considered, differences around 1.75m. will be quite normal.
- $\circ \Delta y: \Delta x$ differences achieved at common points carries very important information about the past tectonic activities.
- Points to be used for transformation and EQC should provide a well and homogenious distribution to project area and if possible extended beyond the project area boundry,

CONCLUSIONS

- At the end, which method is better is not discussed too much, because it depends on ;
 - Requirements of the projects ,
 - Dispersion and sufficiency of the old ED50 points if can be found in the region,
 - Possible positional accuracy of the known points and many other parameters .
- For these reason the decision is left to the practitioner.
- But at least we can say ;
 - Where Helmert Similarity Transformation is not good enough especially for the complex solutions,
 - $\,\circ\,$ Direct and Hybrid solutions were effective enough without any doubt.