XXVI FIG CONGRESS

M⁶–11 May 2018, İstanbul

Progress Towards a Semi-Dynamic Datum for Nepal After the 2015 Gorka Earthquake

> EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT: **ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES**

Organized by

Main Supporters

FIG

Trimble

Niraj Manandhar

Chris Pearson, Puran Chaudhary and Paul Denys

Secular velocity field

• Velocity from four recent studies were aligned with the ITRF2014 velocities

models for 2015 Earthquake & aftershock

First Order adjustment Preliminary results

- Data from 2009-2016
- 222 baselines 217 used 5 rejections

Combined vertical displacements from Gorka earthquake and May aftershock Nepal comb disp

3D view of geoid of Nepal

Fig. 3D view of geoid of Nepal.

Mount Everest.....

National Space Institute DTU and Survey Department of Nepal

Methodology

• Sagarmatha Height Measurement Project (SHMP) consists of following activities

Conclusions

- The proposed semi-dynamic datum for Nepal has an epoch date of 2016, after the end of the earthquake sequence.
- The deformation model has a secular velocity field based on 4 published studies and patches for the April Gorka Earthquake and its May aftershock. It also has a model of post seismic relexation.
- We have started the process of realizing the datum with a readjustment of the first order network. The vertical network remains severely disrupted from the Kathmandu Valley through to the Chinese Boarder
- The upcoming Sagarmatha (Mt. Everest) Height Measurement Project (SHMP) will provide a basis to improve Nepal's vertical datum.