## BÜLENT ECEVİT UNIVERSITY

# <sup>\*</sup>Roof Modelling Potential of UAV Point Clouds by Laser Scanning

Serkan Karakis, Umut Gunes Sefercik, Can Atalay

Bulent Ecevit University, Engineering Faculty, Department of Geomatics Engineering, 67100, Zonguldak



UStantill. Th

06-11 MAY 2018 EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT: ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES



#### Index







#### Motivation

#### DIY UAV (Do It Yourself)

Low-cost and periodic map generation Performance of SJ4000 Action Camera ?





#### Do It Yourself UAV







#### Flow







#### Study Area and Sensors





**Civil Aviation Academy Building** 



#### Sensors

| Focal length          | 2.764 mm                                           |           |  |  |
|-----------------------|----------------------------------------------------|-----------|--|--|
| Resolution            | 4032x3024px                                        |           |  |  |
| Sensor                | Aptina AR0330 CMOS                                 |           |  |  |
| Pixel size            | 1,1905µ                                            |           |  |  |
|                       | Faro Laser Scanner Focus3D X 330                   |           |  |  |
| Range                 | 0.6m - 330m                                        |           |  |  |
| Measurement speed     | up to 976,000 points/second                        |           |  |  |
| Ranging error         | ±2mm                                               |           |  |  |
| Laser class           | Laser class 1,                                     |           |  |  |
| Wavelength            | 1550nm                                             |           |  |  |
| Beam divergence       | 0.19mrad(0.011°)(1/e, half angle)                  |           |  |  |
| Beam diameter at exit | 2.25mm (1/e)                                       |           |  |  |
| Field of view         | (vertical) 300° , (horizontal) 360°                |           |  |  |
| Multi-sensor          | GPS, compass, height sensor, dual axis compensator | <b>AR</b> |  |  |
| Scanner control       | via touchscreen display and Wi-Fi                  | AV IN NA  |  |  |
| Size                  | 240 x 200 x 100mm                                  |           |  |  |





 120m flight altitude
approx. 20 minutes
39 photos







#### DEMSHIFT



**Overlapping Horizontal Shift** 

| <b>Reference roof</b> | tested roof | Shift in X    | Shift in Y  |  |
|-----------------------|-------------|---------------|-------------|--|
| model                 | model       | ( <b>cm</b> ) | <b>(cm)</b> |  |
| TLS                   | UAV         | 5.1           | - 5.0       |  |





#### DEMANAL

Model to model comprasion

| Reference roof | Tested roof | Spacing | RMSE | SZ   | SZ as function of slope | Excluded   |
|----------------|-------------|---------|------|------|-------------------------|------------|
| model          | model       | (m)     | (m)  | (m)  | (m)                     | points (%) |
| TLS            | UAV         | 0.25    | 0.28 | 0.28 | 0.17+1.20×tan(α)        | 0.22       |

SZ as function of roof tilt =  $SZ + b \times tan(\alpha)$ 





### Conculsion

- Unmanned air vehicle roof model was generated from point clouds derived by the aerial photos of very popular and low cost action camera SJ4000.
- The geolocation potential of generated roof model was validated by model-based comparison with a reference roof model acquired by terrestrial laser scanning data.
- Generated roof model has <u>±5cm planimetric</u> and <u>17cm vertical</u> absolute accuracy.
- The accuracy of 3D roof model achieved by <u>SJ4000</u> point clouds corresponds the required geolocation accuracy standards of 1/1000 scaled topographic maps.









#### Thanks for your patient...

