

Dr.-Eng. Gintcho Kostov "GEO ZEMIA" Ltd.

1. Introduction

2. Aims

3. Key parts of the procedure

3. Key parts of the procedure

4. Application of 3D laser scanning in this specific case

5. Application of GNSS equipment in this specific case

6. Implementation of the Combination of the Technologies on the Terrain

6. Implementation of the Combination of the Technologies on the Terrain

7. Analysis of the applied procedure

7. Analysis of the applied procedure

8. Processing of the raw data from 3D Terrestrial Laser scanning and GNSS Measurements

Input of the raw data from GNSS measurements in Geomax Geo Office – fig. 4

i I	Point Id	Point Class	Date/Time /	Posn Olty
	FUILTU	Point Class		Positi Qity
	110025	Reference	07/20/2017 15:01:53	0.0000
	110024	Measured	07/20/2017 15:03:45	0.0097
	110001	Measured	07/20/2017 15:06:12	0.0070
	110002	Measured	07/20/2017 15:07:30	0.0077
	✓ 110003	Measured	07/20/2017 15:07:51	0.0061
	110004	Measured	07/20/2017 15:08:12	0.0072
	✓ 110005	Measured	07/20/2017 15:08:39	0.0072
	110005	Measured	07/20/2017 15:08:39	0.0072

Fig. 4 List of the measured points and quality assessment

The results from GNSS measurements were converted in the appropriate format /using app *GNSSTransformations* – fig. 5/ and imported in Trimble RealWorks,

 -	
	100

www.geodesy.xyz

CNSSTrandomation Datum Point Coordinates GPS Type: F Ger # Bandheld from Transform ToriHeld From Specify TridlL[Decimal] DALKS Celculate Download-RTK mean Upload ToController Solomm **RacesAterDecinal** Bideg Capyli (mini CopyL (min) X Dore / Coppl. [sec] Copy@ [sec] CopyH

8. Processing of the raw data from 3D Terrestrial Laser Scanning and GNSS Measurements

Registration Details											
🕱 Station View	✓ Advan	ced Overall residual erro	or: 0.000 m		_						
Ø Match with	Match with 🖉 Unmatch 🖉 Auto-match all 🖉 Auto-match Station										
Matched Station											
Name	Scan Per Station	Corresponding Target	Scan Per	Residual Error	Delta N	Delta E	Delta El	Fitting Error	Distance to Scanner		
- 😰 💡 Bast001	5			0.000 m							
-22 🖗 003		003	2	0.000 m	-0.000 m	0.000 m	-0.000 m	0.000 m	10.901 m		
-👻 💡 004		004	2	0.001 m	-0.000 m	-0.001 m	0.000 m	0.000 m	7.216 m		
-👷 💡 002		002	2	0.000 m	-0.000 m	-0.000 m	-0.000 m	0.000 m	9.129 m		
-20 🖗 001		001	2	0.001 m	0.000 m	0.000 m	-0.000 m	0.000 m	9.747 m		
2005		005	2	0.000 m	-0.000 m	0.000 m	0.000 m	0.000 m	6.179 m		
- 😰 💡 Bast002	5			0.000 m							
-22 😨 001		001	2	0.001 m	-0.000 m	-0.000 m	0.000 m	0.000 m	3.747 m		
-👻 🖗 002		002	2	0.000 m	0.000 m	0.000 m	0.000 m	0.000 m	4.566 m		
-22 🖗 003		003	2	0.000 m	0.000 m	-0.000 m	0.000 m	0.000 m	2.864 m		
-👻 🖗 004		004	2	0.001 m	0.000 m	0.001 m	-0.000 m	0.000 m	6.175 m		
-20 🖗 🖓		005	2	0.000 m	0.000 m	-0.000 m	-0.000 m	0.000 m	7.342 m		
		Fig. 6	Registr	ation of the	e scans. Qua	ality assessmer	nt of the result	S			

8. Processing of the raw data from 3D Terrestrial Laser Scanning and GNSS Measurements

www.geodesy.xyz

WorkSpace	
🐺 Scans 🗳 Targets 🚰 Images 🛛 Tools	
Scans Targets Tools GEOREFERENCING Step 1 - Select Station Group 'New Group' 1002 1003 1004 1005	
Step 2 · Designate Targets By Target By Picking	Average error of 0.003 m. was achieved.
Name1 Name2 Error ✓ RT1 110001 0.004 m ✓ RT2 110002 0.005 m RT3 110003 0.003 m ✓ RT4 110004 0.003 m ✓ RT5 110005 0.001 m Average Error: 0.003 m 0.003 m ✓ Display Errors 0.003 m	

Fig. 7 Georeferencing of the point cloud.

8. Processing of the raw data from 3D Terrestrial Laser Scanning and GNSS Measurements

	- Pagaoona	Contract of the	0.000		-					
ation View	V Advanced	Overall residual end	v: 0.000 m							
Match with	at Unmatch	Auto-match all	3 G 🛛	match Station						
hed Station										
e	Scan Per Station	Corresponding Target	Scan Per	Residual Error	Delta N	Delta E	Delta El	Fitting Error	Distance to Scanner	
Sud001	4			0.000 m						
(2) (2004)		004	2	0.000 m	-0.000 m	-0.000 m	-0.000 m	0.001 m	8.283 m	
\$ 9 002		002	2	0.000 m	0.000 m	0.000 m	-0.000 m	0.000 m	7.343 m	
		001	2	-0.000 m	-0.000 m	-0.000 m	0.000 m	9.000 m	6.085 m	
8008		603	2	0.000 m	0.000 mi	0.000 m	0.000 m	0.000 m	3.237 m	
Sud002	5			0.000 m						
(2) (2001)		100	2	0.000 m	0.000 en	0.000 m	-0.000 m	0,000 m	4,658 m	
(2) 9 002		002	2	0.000 m	-0.000 n	-0.000 m	0.000 m	0.000 m	3.862 m	
😤 🖗 003		003	2	0.000 m	-0.000 m	-0.000 m	-0.000 m	0.000 m	7.992 m	
🐑 🛊 TargetS							44	0.000 m	2.373 m	
(b) (\$ 004)		004	2	0.000 m	0.000 m	0.000 m	0.000 m	0.000 m	1.833 m	

www.geodesy.xyz

Overall residual error - 0.000 m.

9. Graphical examples of the objects, subject of update of the cadastral plan

Fig. 9 Scanning of impossible to access object "A"

The circumstances:

Note:

of classical surveying equipment.

- hard to access front part and inaccessible rear part; - the object - surrounded by green area; - no possibility for safe positioning of the geodetic equipment next to the object; - Control points - stabilised on the street, see fig 9.

9. Graphical examples of the objects, subject of update of the cadastral plan

Fig. 10 The second station of the scanner – for the inaccessible rear part of object "A"

10. Usage of the information from LIDAR in this case

Fig. 11 View from above - hard to access object "B"

11. 3D laser scanning - video material

Fig. 12 Object "A"

12. Conclusion. Recommendations

12. Conclusion. Recommendations

12. Conclusion. Recommendations

f) Based on the numerical results and the analysis of the applied procedure it could be highly recommended the application of the proposed combination of 3D Terrestrial Laser Scanning and GNSS Technologies in such specific cases in surveying.

The described procedure could be of **significant benefit** for the geodesist, especially under the described circumstances – for measurements of **hard or impossible to access** objects of cadastre.

13. Outlook

Future work. The proposed application of combination of 3D Terrestrial Laser Scanning and GNSS Technologies could be **more productive**, if:

-better accuracy was available from GNSS permanent networks;

- the necessary coverage existed in some regions by the mobile operators.

REFERENCES:

Kostov, G. 2015, "Application of 3D Terrestrial Laser Scanning for Creation of Project Documentation for Cadastral Objects". XXV INTERNATIONAL SYMPOSIUM ON "MODERN TECHNOLOGIES, EDUCATION AND PROFESSIONAL PRACTICE IN GEODESY AND RELATED FIELDS", Sofia, 05 - 06 November 2015

Kostov, G. 2017, Application of 3D Terrestrial Laser Scanning in the Process of Update or Correction of Errors in the Cadastral map. FIG Working Week 2017. Surveying the world of tomorrow - From digitalisation to augmented reality. Helsinki, Finland, May 29–June 2, 2017. ISBN 978-87-92853-61-5. ISSN 2307-4086

Milev, G. 2012, Laser and Radar Scanning. Magazine, pp 5-6, 3-12, Sofia, "GKZ" Issue 2012 (In Bulgarian)

Minchev, M., Iv. Zdravcev, Iv. Georgiev, 2005, Foundations of the application of GPS in geodesy, pp 123, Sofia, UACEG (in Bulgarian)

WEB

http://tinyurl.com/gqk9d4t

http://tinyurl.com/gsuc6pw - (in Bulgarian)

http://tinyurl.com/hjv785u

http://tinyurl.com/pnqqabg

https://tinyurl.com/y7pcwx47

https://tinyurl.com/y7wzpgsp - (in Bulgarian)

https://tinyurl.com/y8dwkk5l

https://tinyurl.com/y9u74vgm

https://tinyurl.com/ya3m7tgw

REFERENCES:

https://tinyurl.com/ybk3xxab http://tinyurl.com/yc4sd7ad - (in Bulgarian) https://tinyurl.com/yc6xeb48

USED SOFTWARE

- 1. Geomax Geo Office (<u>http://tinyurl.com/h9s4aop</u>);
- 2. GNSSTransformations [https://tinyurl.com/y83qp2l2];
- 3. Mkad (<u>http://tinyurl.com/hapgj9l</u> in Bulgarian);
- 4. Trimble RealWorks (<u>http://tinyurl.com/pdckrlr</u>);

www.geodesy.xyz

Thank you for your attention!

