

High Resolution Multi-Lane Road Surface Mapping Using 3D Laser Profilers

John Laurent, Eric Samson, Benoit Petitclerc **Pavemetrics** Systems Inc www.pavemetrics.com

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT: ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

MAIN SUPPORTERS

PLATINUM SPONSORS

Laser profiling (principle)

"3D Time of Flight" vs. "3D Laser Triangulation"

Lidar

Pavemetrics

LCMS

Specifications	Lidar	LCMS
Acquisition Rate	200 profiles/s	5,600-28,000 profiles/s
Range Accuracy/Resolution	5 to 20 mm	0.25mm / 0.1mm
Lateral Resolution	10 mm ++	1mm (FOV = 4m)
Number of points/s	1 MHz	45 MHz (3D and 2D)
Range	3 to 1000 m	3 m

Pavemetrics

APPLICATION: Roads

Landscape vs. Macro

Lidar

LCMS

LTSS – Tunnel scanning

LCMS/LTSS Capabilities

LCMS/LTSS Capabilities

Pavemetrics

APPLICATION: Rails

LDTM – Surveyor grade Terrain Mapping

The importance of road smoothness

- Very wavy roads:
 - 30-40% increase of wear of road
 - Vertical acceleration increases dynamic load impact of traffic
 - Self destruction of bumpy road surfaces
- **Driving comfort**
- Fixed depth milling operations do NOT improve the longitudinal road profile

Pavemetrics

Road Rehabilitation

Pavemetrics

Road Rehabilitation

Pavemetrics LDTM solution

1. LCMS system

- 2 Laser profilers (4 meters field of view)
- 2 Inertial Measurement Units (IMU)
- Distance Measuring Instrument
- (DMI)

- Optical encoder (DMI)
- Inertial Measurement Unit (IMU)
- GNSS

Asphalt Concrete Gravel

Complex Vehicle Dynamics

Wandering Driver example

Pav Mandering Driver example

Compensating for highly dynamic vehicle movement

Before

After

3D Road Profile Before Dynamic Corrections

3D Road Profile After Dynamic Corrections

Pavemetrics

cmsData\2013_07_31\Acqui0009\LcmsData_000000 fis - LcmsPV3D

Help

LDTM - Steps

Equipment Calibration

□ Survey

Processing

- Navigation solution
- Controls Points
- Stitch lanes

Data Exportation

Pavemetrics

LDTM Calibration

- 1 Scan of the calibration validation object
- 2 Stop and GO

3 – Measurement of the position of the sensors

Done only once during sensors installation

Ground Control Points Survey

Ground Control Points

- Surveyed using a robotic total station
- One point every 300 to 1000 meters on road surface or shoulder
- Converted in UTM
- Imported in LCMS-PV3D software

Tie Points Creation

Shift between runs before processing results

No more shift between runs after processing is applied

Stitching Runs (before processing)

Stitching Runs (after processing)

Pavemetrics

Final surface

Pavemetrics Final surface

LAS file viewer (100 x 100)

LDTM validation - Test Track

LDTM Test Track

Pavemetrics

Test S

Multiple runs - Average error compare to GT

■X ■Y ■Z

Accuracy compare to GT (Avg. in mm): X: 5.0 Y: 4.0 Z: 2.5 Repeatability compare to first scan (mm)*: X: 3.0 Y: 5.0 Z: 2.0

LDTM vs Ground Truth – 825m

Multiple runs - Average error compare to GT

■X ■Y ■Z

Accuracy compare to GT(Avg. in mm):	X: 9.0	Y: 7.0	Z: 5.0
Repeatability compare to first scan (mm)* :	X: 6.0	Y: 6.0	Z: 4.0

Other Example: Airfield survey

Other Example: Airfield survey

Other Example: Airfield survey

Results:

Pavemetrics

Questions?