A PILOT STUDY ON LEVELING NETWORK ADJUSTMENT OF MULTI-DIMENSIONAL GEODETIC CONTROL POINTS IN REPUBLIC OF KOREA

FIG WORKING WEEK 2019

And April, Hanoi, Vietnam

PROF. HUNGKYU LEE, <u>MR. SEONGHYEON YUN</u> CHANGWON NATIONAL UNIVERSITY, REPUBLIC OF KOREA

PROF. JAY HYOUN KWON, DR. JISUN LEE THE UNIVERSITY OF SEOUL, REPUBLIC OF KOREA

ORGANISED BY

PLATINUM SPONSORS

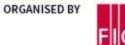
Trimble.

"Geospatial Information for a Smarter Life and Environmental Resilience"

Outline of the Presentation

DESIGN OF A PILOT LEVELING NETWORK BASED ON UCPS

NETWORK ADJUSTMENTS AND RESULTS


CONCLUDING REMARKS

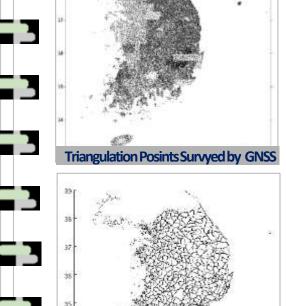
"Geospatial Information for a Smarter Life and Environmental Resilience"

INTRODUCTION

"Geospatial Information for a Smarter Life and Environmental Resilience"

TRADITIONAL GEODETIC CONTROL POINTS IN KOREA

Triangulation Points (TPs)


- About **16,000** points with 2.5 km gridding spaces
- Mostly located on the hilltops for visibility of traditional surveys
- ✤ 75% of TPs were re-surveyed by the GNSS technique
- Nationwide adjustments were performed in 2008 for densification of the new global geodetic datum (KGD2002).

Geodetic Benchmarks (BMs)

- A total of **7,296 points** (1st-order: 1,135, 2nd-order: 6,161)
- Sited every 2km or 4km along major national and state roads
- Nationwide adjustment were carried out from 2005 to 2006

Limitations

- Poor accessibility of TPs due to their topographical locations
- Low spatial density of BMs because of geometrical feature of leveling loops
- Difficulty to maintain a huge number of the geodetic points

Geodetic Leveling Benchmarks

"Geospatial Information for a Smarter Life and Environmental Resilience"

MULTI-DIMENSIONAL GEODETIC CONTROL POINTS IN KOREA

Unified Control Points (UCPs)

- Multi-dimensional geodetic control points providing 3-D geodetic coordinates, orthometric heights, and gravities.
- Multi-functional surveying control points for traditional surveys, GNSS, relative gravimetry, and satellite photogrammetry and remote sensing
- * Installed in the low elevation areas with a consideration of accessibility
- The UCP network will supersede the most traditional geodetic points.

"Geospatial Information for a Smarter Life and Environmental Resilience"

STATUS OF UCPS INSTALLATION AND SURVEYING CAMPAIGN

The 1st-phase UCPs

Overview

- 1,196 points were installed from 2008 to 2012 at mostly 10km gridding spaces
- Surveyed by GNSS, spirit-leveling (double-running & single connection), gravimetery
- GNSS network adjustment was completed
- Simple arithmetic computation was adopted for height determination

Limitations

- Low density of supporting traditional surveying techniques (e.g., spirit-leveling)
- Very poor reliability of leveling network
- Relative low precision of geodetic leveling

The 2nd-phase UCPs

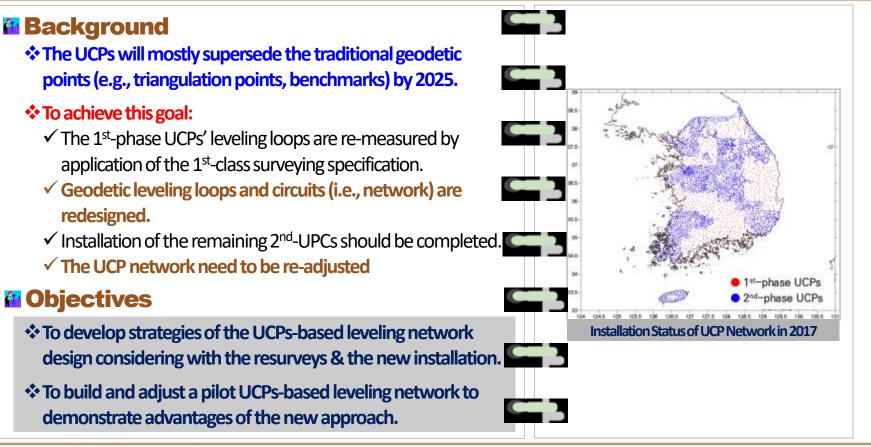
Overview

- Commencing the project in 2012 to the 1st-phase UCPs up to 3 km gridding intervals by installing additional 6,000 points
- Surveyed by GNSS, spirit-leveling, gravimeter
- But, spirit-leveling lines are connected to at least two control points (UCPs and/or BIVIs)
- Gravity observations are used for orthometric corrections and geoid modeling

Future Considerations

- Installation of remaining points & surveys
- Design of geodetic leveling loops and circuits
- * Geodetic network adjustment

HE SCIENCE OF WHERE



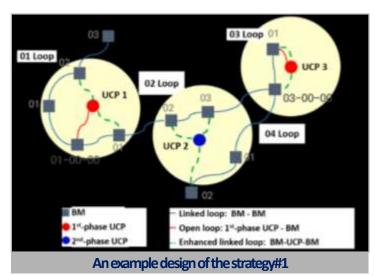
"Geospatial Information for a Smarter Life and Environmental Resilience"

BACKGROUND & OBJECTIVE OF THE RESEARCH

ORGANISED BY

DESIGN OF A PILOT LEVELING NETWORK BASED ON UCPS

PLATINUM SPONSORS



"Geospatial Information for a Smarter Life and Environmental Resilience"

STRATEGIES OF A NEW LEVELING NETWORK DESIGN (1/3)

Strategy#1: Substitution

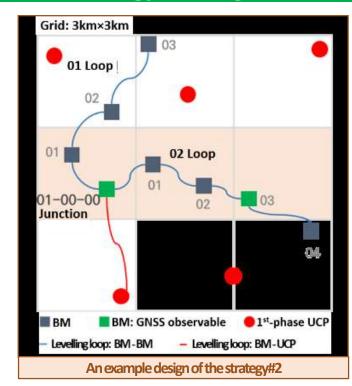
- ✓ UCPs replace some BMs within 3km radius.
- Some legacy loops are removed from a new network

Bin As IS:

- ✤ 1st-phase UCPs are connected to a single BM.
- ✤ 2nd-phase UCPs are linked to two BMs.
- In some areas, excessive geodetic points are located as shown in Figure (4 with 3km radius).

To Be:

- 1st-phase UCPs loops will be connected to two near BMs or UCPs by the 1st-class leveling
- BM 01-00-00 and -01 will be removed and the leveling loop will be no longer maintained.
- If possible, a certain UCP will be linked to three BMs and/or others UCPs for enhancement of the geometric strength.



"Geospatial Information for a Smarter Life and Environmental Resilience"

STRATEGIES OF A NEW LEVELING NETWORK DESIGN (2/3)

Strategy#2: Designation

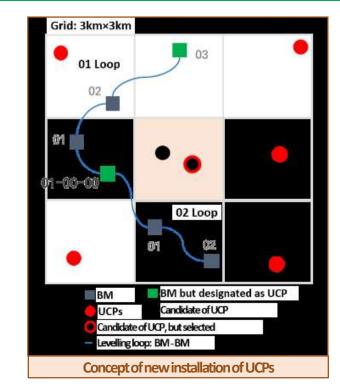
BMs can be designated as UCPs by GNSS surveys.

🚰 As Is:

- In some area, no UCP exists at 3km gridding space
- However, GNSS surveys are possible according to reconnaissance.

Bar To Be:

- Instead of installing a new 2nd-phase UCP, BM will be designated UCP by GNSS surveying.
- For instance, BM 01-00-00 and 01-00-03 can be possible designated UCP in the future leveling network implementation.



"Geospatial Information for a Smarter Life and Environmental Resilience"

STRATEGIES OF A NEW LEVELING NETWORK DESIGN (3/3)

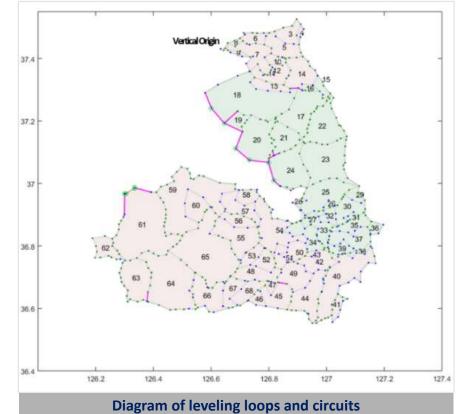
Strategy#3: New Installation

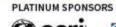
🔁 🔐 As IS:

- Although the 1st-phase UCPs installation was completed in 2012, no UCP exists in some 3km grid (e.g., see, 2nd-row and 2nd-colum)
- The 2nd-phase installation project is still ongoing.

🛪 🛍 To Be:

- Such a grid has the most high priority of new UCP installation.
- After setting up a survey mark, GNSS, spiritleveling, gravimetry will carried out.
- By adding the new UCP, leveling loops are rebuilt by application of the strategy 1 and 2

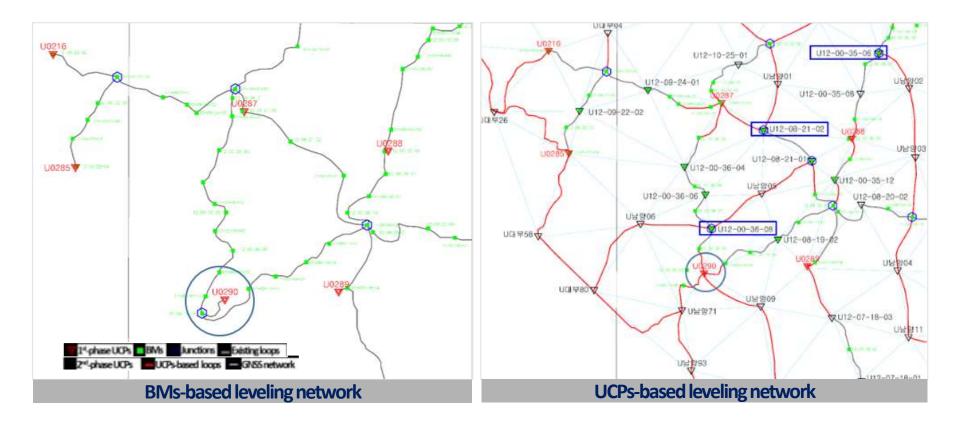


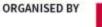


"Geospatial Information for a Smarter Life and Environmental Resilience"

OVERVIEW OF THE PILOT LEVELING NETWORK

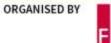
- Circuit No. 12 of the national network
 - ✓ The vertical origin is included.
 - The 2nd-phase UCP installation was mostly completed.
 - ✓ The 1st-phase UCPs are re-surveyed to connect at least two near BIMs and/or UCPs.
- New installation and surveys in this study
 - ✓ 8 UCPs were added along the west shoreline to make the leveling loops dose.
 - ✓ 5 leveling section in inland were surveyed.
- The designed network
 - Consisted of 70 sub-circuits composed by 621 points
 - ✓ The No. of measurements is 690, and 64% of them was observed by the 1st-classs standard.


THE SCIENCE OF WHER

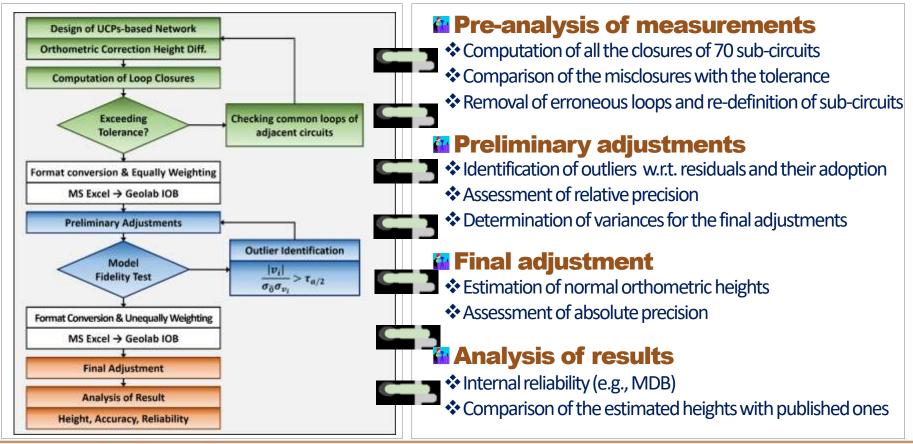


"Geospatial Information for a Smarter Life and Environmental Resilience"

COMPARION OF LEGACY AND NEW LEVELING NEWORK



NETWORK ADJUSTMENT AND RESULTS



"Geospatial Information for a Smarter Life and Environmental Resilience"

A Procedure of Adjustment and Analysis

ORGANISED BY

PLATINUM SPONSORS

Strimble

"Geospatial Information for a Smarter Life and Environmental Resilience"

PRE-ANALYSIS OF MEASUREMENTS

Misclosure Computations	Redefinition of the sub-circuits		
* Average of misclosures: 15. 3mm	Two erroneous loops were removed and the		
* Average of normalized misclosures:	sub-circuits were redefined.		
$2.3mm\sqrt{km}$	Average of misclosures: 13.0mm		
* Circuits exceeding the tolerance	Average of normalized misclosures:		
Six circuits had relatively larger misclosures.	1.8 $mm\sqrt{km}$		
 Further analysis with adjacent circuit sharing the suspected circuits was conducted. 	Note that the circuits exceeding tolerance are still remained in the data.		
Initial normalized misclosures	Normalized misclosure after revision		
	13 10 1 1 1 1 1 1 1 1 1 1 1 1 1		

ORGANISED BY

THEFT

PLATINUM SPONSORS

THE SCIENCE OF WHERE

"Geospatial Information for a Smarter Life and Environmental Resilience"

PRELIMINARY ADJUSTMENTS

Possible outlier examination	Determination of reference variances		
 A reference standard deviation: ±2mm√km One measurement was detected as an outlier from a local test w.r.t. normalized residuals. 	✤ Iterative adjustments were carried out to determine reference variances (σ_0^2) of the 1 st and 2 nd —class surveyed measurements.		
 The erroneous line was removed The subsequent 2nd -round adjustment passed a global test 	*1 st -class σ_0^2 : ±1. 7mm/ \sqrt{km} *2 nd -class σ_0^2 : ±3. 4mm/ \sqrt{km} *Average relative accuracy: ±3.4mm		

Summary of the adjustments					
Trial	No. of points	No. of Obs.	No. of unknown	Degree of freedom	A posterior variance
1 st	618	684	617	67	1.627 (fail)
2 nd		683		66	1.248 (pass)
3 rd					0.981 (pass)

THURSDAY

"Geospatial Information for a Smarter Life and Environmental Resilience"

FINAL ADJUSTMENTS (1/4)

Measurement Sets for the Adjustments

Two sets of measurements were adjusted by fixing the national vertical origin

CASE-I

All of the stations and observations described in the section 2

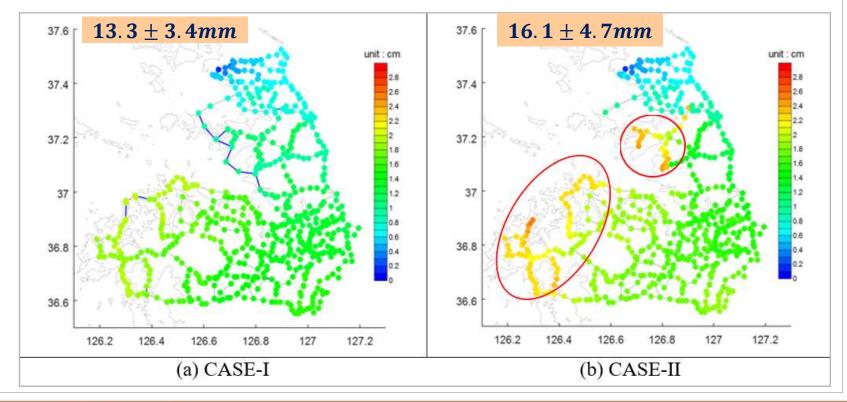
CASE-II

The same as CASE-I, but stations & observations made by this study were excluded.

Overall Results of the Adjustments

- Global tests of adjustments were passed.
- DoF of CASE II is smaller than that of CASE I in spite of its small number of stations.
- The new installation and surveying campaign enhance overall reliability of the leveling network.
- NGII continues performing field campaigns for improvement of geometric strength.

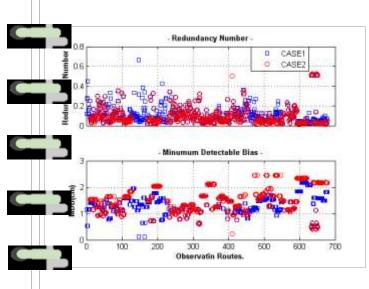
Case	No. of Control Points	No. of Observations	No. of Unknowns	Degree of Freedom	A posterior Variance
I.	619	684	618	66	0.981 (pass)
II	605	657	604	53	1.009 (pass)



"Geospatial Information for a Smarter Life and Environmental Resilience"

FINAL ADJUSTMENT (2/4)

Absolute accuracy



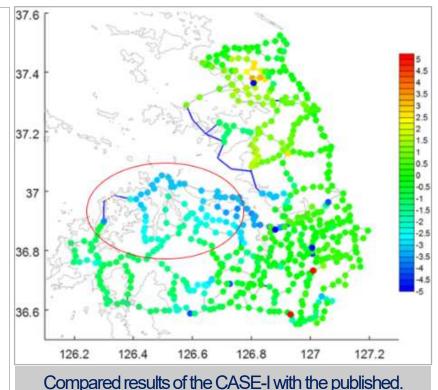
"Geospatial Information for a Smarter Life and Environmental Resilience"

FINAL ADJUSTMENT (3/4)

🔐 Reliability

- Redundancy numbers (RN) and MDBs of CASE I are smaller than that of CASE II in general.
- No. of loops having zero RN of CASE II is larger than that of CASE I
- New installations and survey campaigns generally enhance reliability of the network.
- Note that such a reliability is still not enough to sufficiently checking out outliers

Casa	Redundancy Number		MDB (unit: cm)		No. of obs. whose
Case	Average	Std. Dev.	Average	Std. Dev.	redundancy number is zero
I	0.096	±0.082	3.7	±1.4	22 (3.6%)
П	0.081	±0.080	4.0	±1.8	82 (13.6%)


"Geospatial Information for a Smarter Life and Environmental Resilience"

FINAL ADJUSTMENT (4/4)

Height change after the adjustment

- Estimated heights of CASE-I were compared to the published ones
 - $\checkmark\,$ A bias is observed around circled area
 - $\checkmark~$ The 1st-order BMs are not mostly changed
 - ✓ The difference of heights of 1st -phase UCPs are relatively large

Considering the accuracy enhancement, the height change, especially the bias along the west coastline might **positively impact** into the estimated heights.

HE SCIENCE OF WHER

"Geospatial Information for a Smarter Life and Environmental Resilience"

Concluding Remarks

PLATINUM SPONSORS

"Geospatial Information for a Smarter Life and Environmental Resilience"

Necessity of UCP

Legacy reference points(TPs, BMs) has limitation due to the feature of terrestrial surveying

Multi-dimensional and multi-functional control point was designed and has been installing to overcome the limitation of existing reference points

Design of the geodetic vertical network based on UCPs

UCPs based network will supersede the current network and play a role as a single layer network after full implementation with total 7,000 points

Three strategies were suggested to design UCPs based geodetic leveling network

Evaluation of the impact of UCPs

A pilot network was adjusted and analyzed in the aspect of accuracy, reliability, and height

* Addition of the UCPs and loops led to improvement of geometric strength of network

The accuracy and reliability were overall enhanced

* <u>Considering these results</u>, the impact of additional installation and survey into the height would be positive.

FIG FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam "Geospatial Information for a Smarter Life and Environmental Resilience"

Thank you for your attention

Email : tjdgus2859@naver.com

PLATINUM SPONSORS

