ORGANISED BY 22-26 April, Hanoi, Vietnam # A Multi-dimensional Cadastral Topological Data Model: Design and Implementation Yuan Ding dingyuanhhu@hhu.edu.cn 22-26 April, Hanoi, Vietnam ### What are multi-dimensional cadastral objects? | Type code | Туре | Description | Dimension | | |------------------------|---------------------------------|--|-----------|--| | <i>o</i> ₁ | v+t | A boundary point embedded in 3D/4D space-time | 0 | | | 02 | e+t | A boundary line embedded in 3D/4D space-time | 1 | | | <i>o</i> ₃ | $v+(t_i, t_j) t_i \neq t_j$ | The change of a boundary point in a specified time interval | | | | <i>o</i> ₄ | f+t | A boundary face embedded in 3D/4D space-time | | | | <i>o</i> ₅ | u^2+t | 2 | | | | 0 ₆ | $e+(t_i, t_j) t_i \neq t_j$ | The change of a boundary line in a specified time interval | | | | 0 ₇ | u^3+t | A 3D spatial unit embedded in 4D space-time | | | | 08 | $f + (t_i, t_j) t_i \neq t_j$ | The change of a boundary face in a specified time interval | 3 | | | 09 | $u^2 + (t_i, t_j) t_i \neq t_j$ | The change of a 2D spatial unit in a specified time interval | | | | <i>o</i> ₁₀ | $u^3 + (t_i, t_j) t_i \neq t_j$ | The change of a 3D spatial unit in a specified time interval | 4 | | 22-26 April, Hanoi, Vietnam "Geospatial Information for a Smarter Life and Environmental Resilience" #### What are their topological relations? | Type code | <i>o</i> ₁ | <i>o</i> ₂ | 03 | <i>o</i> ₄ | <i>o</i> ₅ | 0 ₆ | 0 ₇ | 08 | 0 9 | <i>o</i> ₁₀ | |------------------------|-----------------------|-----------------------|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----|------------|------------------------| | <i>o</i> ₁ | ADJ | IN | 02 | | ADJ | ADJ | IN | 03 | | | Ø | Ø | Ø | IN | Ø | IN | IN | IN | | 04 | | | | ADJ | Ø | ADJ | IN | IN | Ø | IN | | <i>o</i> ₅ | | | | | ADJ | ADJ | Ø | Ø | IN | Ø | | <i>0</i> ₆ | | | | | | ADJ | Ø | IN | IN | IN | | <i>o</i> ₇ | | | | | | | ADJ | ADJ | Ø | IN | | 08 | | | | | | | | ADJ | Ø | IN | | 09 | | | | | | | | | ADJ | Ø | | <i>o</i> ₁₀ | | | | | | | | | | ADJ | 22-26 April, Hanoi, Vietnam "Geospatial Information for a Smarter Life and Environmental Resilience" Two common ideas for designing the multi-dimensional cadastral topological data model (MDCTDM) (1) Record all the adjacency and incidence relations for cadastral objects (2) Record the adjacency relations and the incidence relations between iD and (i+1)D cadastral objects 22-26 April, Hanoi, Vietnam "Geospatial Information for a Smarter Life and Environmental Resilience" #### Three conditions for the ideal MDCTDM - (1) The time should be modeled as a geometric dimension that is the same as the other three geometric dimensions. - (2) The topological relation between any two cadastral objects can be obtained without computing the topological relations of other cadastral objects. - (3) Record the topological relations of as few cadastral objects as possible. 22-26 April, Hanoi, Vietnam #### Conceptual design of the multidimensional cadastral topological data model(MCTDM) 22-26 April, Hanoi, Vietnam #### Represent cadastral objects by generalized maps THE SCIENCE OF WHERE 22–26 April, Hanoi, Vietnam "Geospatial Information for a Smarter Life and Environmental Resilience" #### Realizing generalized maps by object-tuple structures $$a_0$$: $(n_0, e_0, f_0, V_0) \leftrightarrow (n_1, e_0, f_0, V_0)$ a_1 : $(n_0, e_0, f_0, V_0) \leftrightarrow (n_1, e_1, f_0, V_0)$ a_0 : $(n_0, e_0, f_0, V_0) \leftrightarrow (n_1, e_0, f_1, V_0)$ a_0 : $(n_0, e_0, f_0, V_0) \leftrightarrow (n_1, e_0, f_0, V_1)$ 22-26 April, Hanoi, Vietnam #### **Physical model of MDCTDM** 22-26 April, Hanoi, Vietnam #### **Case Study** 22-26 April, Hanoi, Vietnam #### **SET TRANSACTION NAME 'InsertBoundaryPoint';** INSERT ObjectTuple VALUES (n_7 , e_7 , f_3 , u_0^3 , NULL, n_0 , e_1 , f_0 , NULL, NULL, ID, INSERT ObjectTuple VALUES $(n_7, e_7, f_0, u_0^3, \text{NULL}, n_0, e_0, f_3, u_1^3, \text{NULL}, \text{ID}_{n7})$ INSERT ObjectTuple VALUES $(n_7, e_7, f_0, u_1^3, \text{NULL}, n_0, e_0, f_4, u_0^3, \text{NULL}, \text{ID}_{n7})$ INSERT ObjectTuple VALUES $(n_7, e_7, f_4, u_1^3, \text{NULL}, n_0, e_2, f_0, \text{NULL}, \text{NULL}, \text{ID}_{n7})$ INSERT Object Tuple VALUES $(n_7, e_8, f_3, u_0^3, \text{NULL}, n_1, e_4, f_0, \text{NULL}, \text{NULL}, \text{ID}_{n7})$ INSERT ObjectTuple VALUES $(n_7, e_8, f_0, u_0^3, \text{NULL}, n_1, e_6, f_3, u_1^3, \text{NULL}, \text{ID}_{n7})$ INSERT ObjectTuple VALUES $(n_7, e_8, f_0, u_1^3, \text{NULL}, n_1, e_6, f_4, u_0^3, \text{NULL}, \text{ID}_{n7})$ INSERT ObjectTuple VALUES $(n_7, e_8, f_4, u_1^3, \text{NULL}, n_1, e_5, f_0, \text{NULL}, \text{NULL}, \text{ID}_{n7})$ UPDATE ObjectTuple SET CadastralObj1D= e_7 , Alpha0D= n_7 WHERE CadastralObj1D= e_3 #### AND CadastralObj0D= n_0 ; UPDATE ObjectTuple SET CadastralObj1D= e_8 , Alpha0D= n_7 WHERE CadastralObj1D= e_3 AND CadastralObj $0D = n_1$; UPDATE ObjectTuple SET Alpha1D= e_7 WHERE Alpha1D= e_3 AND CadastralObj0D= n_0 ; UPDATE ObjectTuple SET Alpha1D= e_8 WHERE Alpha1D= e_3 AND CadastralObj0D= n_1 ; **COMMIT**; 22-26 April, Hanoi, Vietnam ## Thank You!