

ORGANISED BY

22-26 April, Hanoi, Vietnam

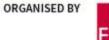
A Multi-dimensional Cadastral Topological Data Model: Design and Implementation

Yuan Ding dingyuanhhu@hhu.edu.cn

22-26 April, Hanoi, Vietnam

What are multi-dimensional cadastral objects?

Type code	Туре	Description	Dimension	
<i>o</i> ₁	v+t	A boundary point embedded in 3D/4D space-time	0	
02	e+t	A boundary line embedded in 3D/4D space-time	1	
<i>o</i> ₃	$v+(t_i, t_j) t_i \neq t_j$	The change of a boundary point in a specified time interval		
<i>o</i> ₄	f+t	A boundary face embedded in 3D/4D space-time		
<i>o</i> ₅	u^2+t	2		
0 ₆	$e+(t_i, t_j) t_i \neq t_j$	The change of a boundary line in a specified time interval		
0 ₇	u^3+t	A 3D spatial unit embedded in 4D space-time		
08	$f + (t_i, t_j) t_i \neq t_j$	The change of a boundary face in a specified time interval	3	
09	$u^2 + (t_i, t_j) t_i \neq t_j$	The change of a 2D spatial unit in a specified time interval		
<i>o</i> ₁₀	$u^3 + (t_i, t_j) t_i \neq t_j$	The change of a 3D spatial unit in a specified time interval	4	


22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

What are their topological relations?

Type code	<i>o</i> ₁	<i>o</i> ₂	03	<i>o</i> ₄	<i>o</i> ₅	0 ₆	0 ₇	08	0 9	<i>o</i> ₁₀
<i>o</i> ₁	ADJ	IN	IN	IN	IN	IN	IN	IN	IN	IN
02		ADJ	ADJ	IN	IN	IN	IN	IN	IN	IN
03			Ø	Ø	Ø	IN	Ø	IN	IN	IN
04				ADJ	Ø	ADJ	IN	IN	Ø	IN
<i>o</i> ₅					ADJ	ADJ	Ø	Ø	IN	Ø
<i>0</i> ₆						ADJ	Ø	IN	IN	IN
<i>o</i> ₇							ADJ	ADJ	Ø	IN
08								ADJ	Ø	IN
09									ADJ	Ø
<i>o</i> ₁₀										ADJ

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

Two common ideas for designing the multi-dimensional cadastral topological data model (MDCTDM)

(1) Record all the adjacency and incidence relations for cadastral objects

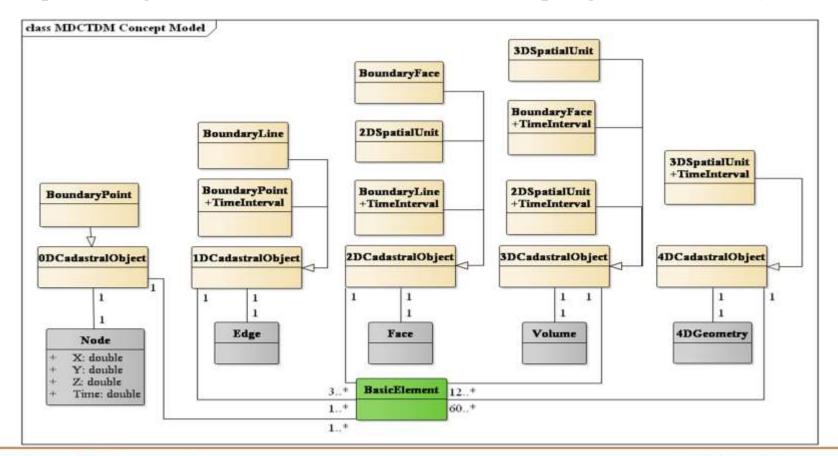
(2) Record the adjacency relations and the incidence relations between iD and (i+1)D cadastral objects

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

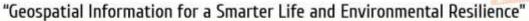
Three conditions for the ideal MDCTDM

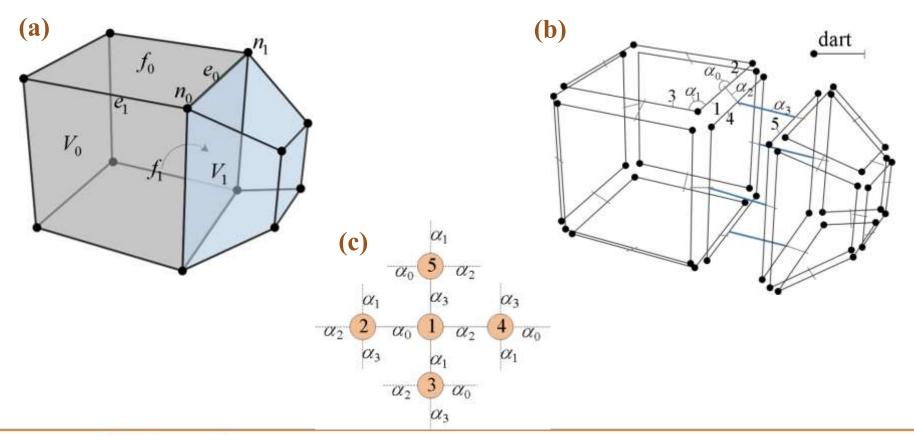
- (1) The time should be modeled as a geometric dimension that is the same as the other three geometric dimensions.
- (2) The topological relation between any two cadastral objects can be obtained without computing the topological relations of other cadastral objects.
- (3) Record the topological relations of as few cadastral objects as possible.



22-26 April, Hanoi, Vietnam

Conceptual design of the multidimensional cadastral topological data model(MCTDM)





22-26 April, Hanoi, Vietnam

Represent cadastral objects by generalized maps

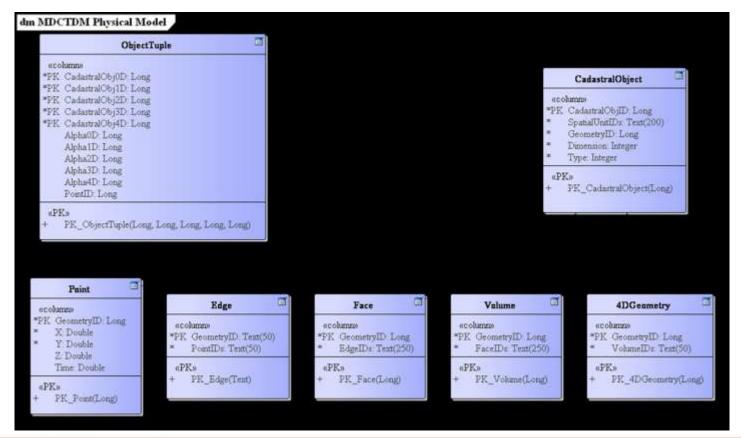
THE SCIENCE OF WHERE

22–26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

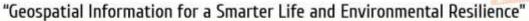
Realizing generalized maps by object-tuple structures

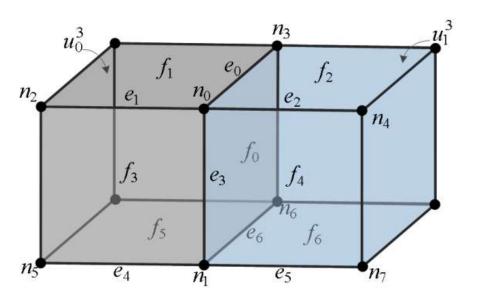
$$a_0$$
: $(n_0, e_0, f_0, V_0) \leftrightarrow (n_1, e_0, f_0, V_0)$
 a_1 : $(n_0, e_0, f_0, V_0) \leftrightarrow (n_1, e_1, f_0, V_0)$
 a_0 : $(n_0, e_0, f_0, V_0) \leftrightarrow (n_1, e_0, f_1, V_0)$
 a_0 : $(n_0, e_0, f_0, V_0) \leftrightarrow (n_1, e_0, f_0, V_1)$

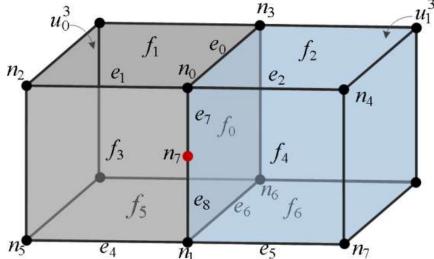


22-26 April, Hanoi, Vietnam

Physical model of MDCTDM






22-26 April, Hanoi, Vietnam

Case Study

22-26 April, Hanoi, Vietnam

SET TRANSACTION NAME 'InsertBoundaryPoint';

INSERT ObjectTuple VALUES (n_7 , e_7 , f_3 , u_0^3 , NULL, n_0 , e_1 , f_0 , NULL, NULL, ID,

INSERT ObjectTuple VALUES $(n_7, e_7, f_0, u_0^3, \text{NULL}, n_0, e_0, f_3, u_1^3, \text{NULL}, \text{ID}_{n7})$

INSERT ObjectTuple VALUES $(n_7, e_7, f_0, u_1^3, \text{NULL}, n_0, e_0, f_4, u_0^3, \text{NULL}, \text{ID}_{n7})$

INSERT ObjectTuple VALUES $(n_7, e_7, f_4, u_1^3, \text{NULL}, n_0, e_2, f_0, \text{NULL}, \text{NULL}, \text{ID}_{n7})$

INSERT Object Tuple VALUES $(n_7, e_8, f_3, u_0^3, \text{NULL}, n_1, e_4, f_0, \text{NULL}, \text{NULL}, \text{ID}_{n7})$

INSERT ObjectTuple VALUES $(n_7, e_8, f_0, u_0^3, \text{NULL}, n_1, e_6, f_3, u_1^3, \text{NULL}, \text{ID}_{n7})$

INSERT ObjectTuple VALUES $(n_7, e_8, f_0, u_1^3, \text{NULL}, n_1, e_6, f_4, u_0^3, \text{NULL}, \text{ID}_{n7})$

INSERT ObjectTuple VALUES $(n_7, e_8, f_4, u_1^3, \text{NULL}, n_1, e_5, f_0, \text{NULL}, \text{NULL}, \text{ID}_{n7})$

UPDATE ObjectTuple SET CadastralObj1D= e_7 , Alpha0D= n_7 WHERE CadastralObj1D= e_3

AND CadastralObj0D= n_0 ;

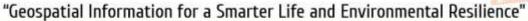
UPDATE ObjectTuple SET CadastralObj1D= e_8 , Alpha0D= n_7 WHERE CadastralObj1D= e_3

AND CadastralObj $0D = n_1$;

UPDATE ObjectTuple SET Alpha1D= e_7 WHERE Alpha1D= e_3 AND CadastralObj0D= n_0 ;

UPDATE ObjectTuple SET Alpha1D= e_8 WHERE Alpha1D= e_3 AND CadastralObj0D= n_1 ;

COMMIT;



22-26 April, Hanoi, Vietnam

Thank You!

