

The Potential of Using Satellite Altimetry for Detecting Sea Level Changes in Brunei

Muhammad Hifney Hj Abd Rahman Surveyor Brunei Survey Department

ORGANISED BY

FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam

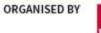
"Geospatial Information for a Smarter Life and Environmental Resilience"

CONTENTS

- Introduction
- Objectives & Outcomes
- Background
- Satellite Altimetry for Sea Level Study
- Methodology
- Results & Analysis
- Further Work
- Conclusion

INTRODUCTION

- The rise of sea level change raised concerns to the earth's population
- Global sea level rise is accelarating incrementally over time in the last 25 years
- Two major factors:
 - Thermal expansion
 - Melting of glaciers and ice sheets



• To investigate the potential of using satellite altimetry data for studying sea level changes in Brunei coastal area

OBJECTIVES & OUTCOMES

- Understand the basic and fundamental concepts of satellite altimetry
- Review on previous study
- How altimetry data been used and challenges
- Data plotting using Phyton Programming software from Jason-1 and Jason-2 mission
- Data assessment with recommendations on the reliability of the data

HOW SEA LEVEL CAN BE DETERMINED?

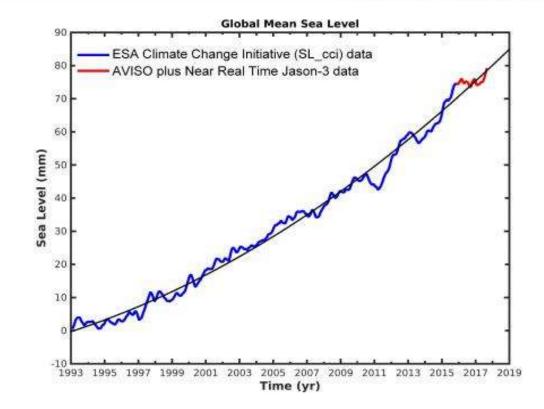
- Tide Gauge and Global Navigation Satellite System (GNSS) effected by vertical land motion (VLM)
- Satellite Altimetry satellite-based technology with reference to earth's center (independent)

FACTORS OF SEA LEVEL CHANGES

- Thermal Expansion rise in sea surface temperature
 - Ocean warmed by 0.009°C to 0.13°C per decade (IPCC, 2014)
- Sea level rise in coastal area due to tides and storm surge
- Vertical Land Motion
- Thermohaline Circulation water density increased due to temperature and salinity

GLOBAL SEA LEVEL TREND

- Rise of sea level concerned the world's population especially in the coastal areas
- Sea level rise can cause flooding, faster rate of erosion of cliffs and beaches and permanent submersion
- Sea level predicted to keep on rising in the next decade
- Global sea level rise at 1.6mm-1.8mm per year (tide gauge)
- 3.2mm-3.4mm per year since 1992 (satellite altimetry)



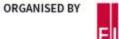
esri **esri**

FIG WORKING WEEK 2019 22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

GLOBAL SEA LEVEL TREND

25 years of multi-mission sea level trend from altimetry (Source: ESA and CNES/LEGOS (AVISO), 2017)



IMPORTANCE OF SEA LEVEL STUDIES

- Disaster mitigation plan
- Coastal management

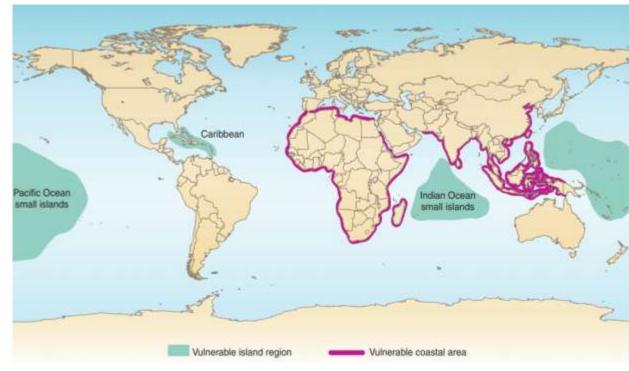


FIG WORKING WEEK 2019 22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

IMPORTANCE OF SEA LEVEL STUDIES

Regions that are vulnerable to coastal flooding due to sea level rise (Source: Nicholls and Cazenave, (2010))

PLATINUM SPONSORS

ORGANISED BY

IMPORTANCE FOR BRUNEI DARUSSALAM?

- Geographical Location
- Industrial projects on islands and coastal region
- Long-term mitigation plan

esri () esri () esri () esri

PREVIOUS STUDY IN SOUTH CHINA SEA

- World Bank Group published sea level anomaly for South China Sea based on T/P mission indicated a rise between 1992-2008
- Study by Li (2002) found there is a rise at the rate of 10mm/year with warming rate at 0.15° C/ year between 1993-1999
- Sea level fall in 1997-1998 due to El-Nino event (Cheng and Qi, 2007)
- Latest study by Hamid et.al (2016) indicated a rise at 3.85 mm/year (1993-2005) by using multi mission



esri Etimbl

FIG WORKING WEEK 2019 22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

PRINCIPLES OF SATELLITE ALTIMETRY

PLATINUM SPONSORS

THEFT

PRINCIPLE OF SATELLITE ALTIMETRY

- Measurement of time taken by a radar pulse to travel from satellite to the sea surface and back to the satellite
- Satellite location based on latitude, longitude and satellite altitude coordinates
 - GNSS Satellites
 - DORIS station
 - Satellite Laser Ranging (SLR)

ERRORS AND CORRECTIONS

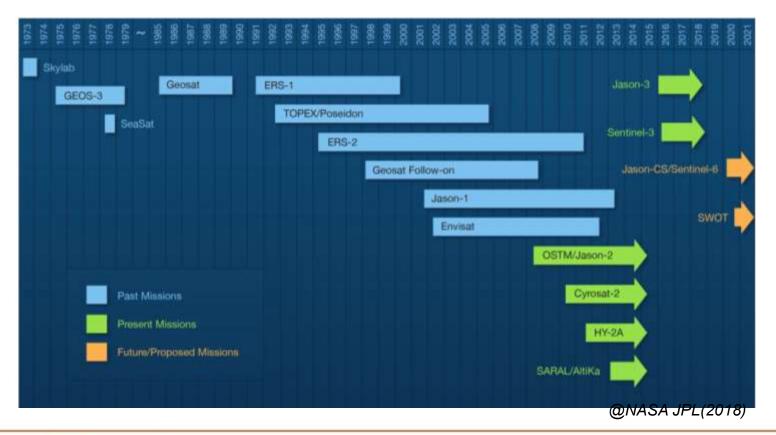
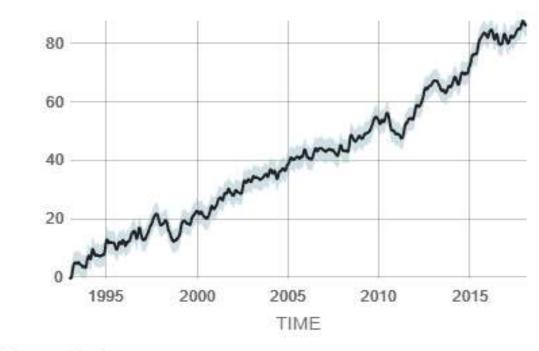

- Waves pass through the atmosphere can be decelerated by water vapour and inonisation
- Corrections:
 - Range corrections
 - Geophysical corrections tides and atmospheric pressure

FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

SATELLITE ALTIMETRY MISSION

ORGANISED BY



SATELLITE ALTIMETRY FOR SEA LEVEL

Since 1992

Sea Height Variation (mm) Better accuracy when

Source: climate.nasa.gov

compared to tide

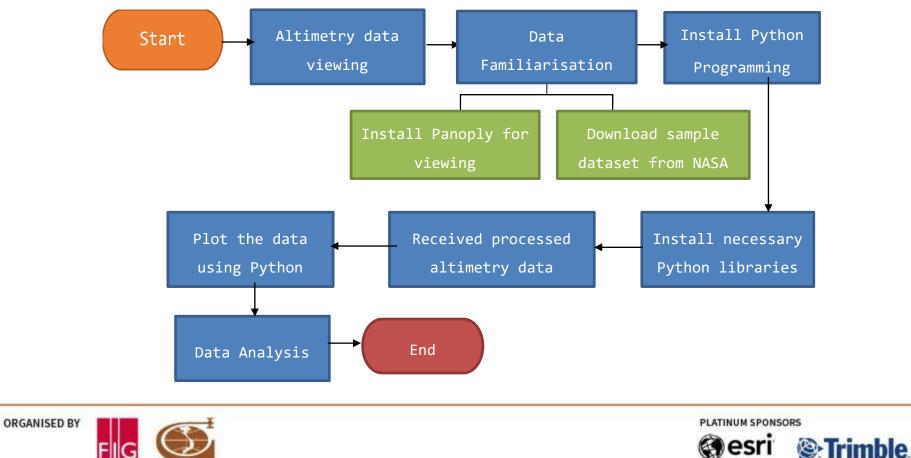

gauge - independent

FIG WORKING WEEK 2019 22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

PROJECT OVERVIEW

THE SCIENCE OF WHERE

DATA SOURCE

- Geophysical Data Record (GDR) AVISO
- Data contains sensor measurements and full set of geophysical corrections
- Two sets
 - Radar Altimetry Database System (RADS)
 - Sensor Geophysical Data Record (SGDR)
- Downloaded from NASA

RADAR ALTIMETRY DATABASE SYSTEM (RADS)

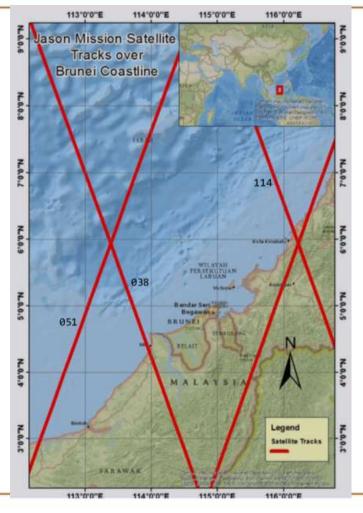
- Provides simplification for reading, editing and handling
- Users able to access to the up-to-date range and geophysical corrections
- Consists of 1 Hz waveform 1 point every 6 kilometres

SENSOR GEOPHYSICAL DATA RECORD (SGDR)

- Full accuracy altimeter
- High precision orbit
- Accuracy approximately 1.5 cm
- Contains all relevant corrections for sea surface height calculation
- Include 20Hz waveform 1 point every 300m

DATA

- Processed data from Jason I and Jason II mission between 2002-2016
- Tracking path near Brunei coastline
- Jason mission tracks every 10 days during its mission
- Approximately 550 tracks


PLATINUM SPONSORS

THE SCIENCE OF WHER

FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

TRACTORE

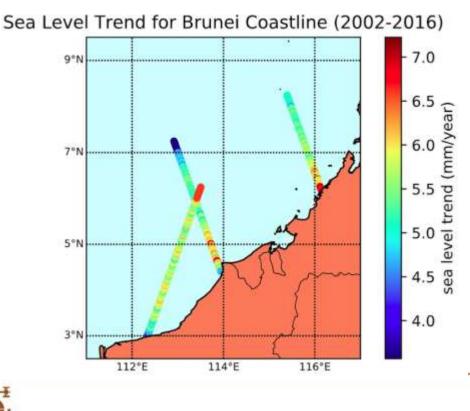
DATA PROCESSING

- Processed by Dr Nadim Dayoub National Oceanography Centre, Southampton
- Sea surface height processed relative to DTU15MSS model then computed using ALES retracker
- DTUMSS15? Latest release model for high resolution mean sea surface
- Time series sea level trend calculated using Robust Regression analysis

esri Strinble

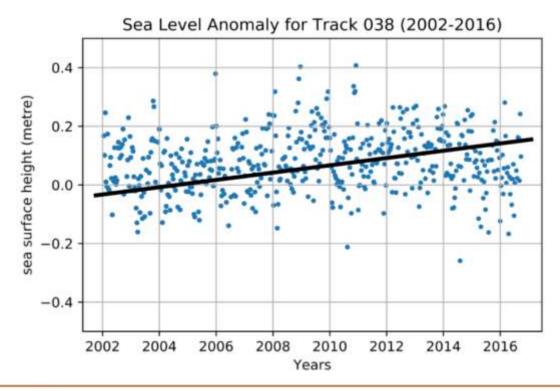
DATA PLOTTING

- Time series sea level trend calculated using Robust Regression analysis
- Data in netCDF format
- Python programming ability to handle and plot netCDF data



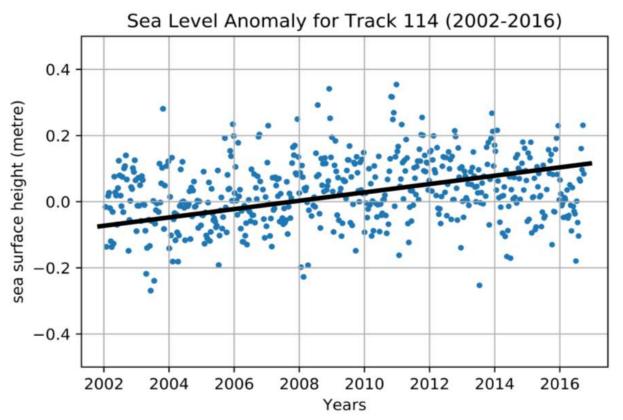
RESULTS AND ANALYSIS

• Sea level trends from 2002-2016 from three satellite tracks near Brunei coastline



RESULTS AND ANALYSIS

• Average sea level trend rise at 5.5 mm/year



esri () esri () esri () esri

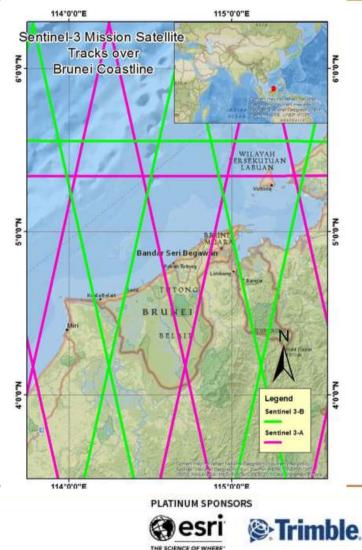
RESULTS AND ANALYSIS

DISCUSSION AND RECOMMENDATION

- Sea Level Trend
 - The sea level trend in this project does agree with previous study
- Limitations
 - Extensive period can give clear indication of the trend
 - Satellite coverage not exactly at Brunei coastline
 - Errors as it approached the coastline

FUTURE WORK

- Data validation against existing tide gauges one tide gauge collected data since 1990
- Vertical land motion study availability of tide gauges and GNSS
- Study of water level for rivers and lakes
- Sentinel-3 mission extensive satellite coverage


IF SCIENCE OF WHER

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

FUTURE WORK – SENTINEL 3 MISSION

• First launched in 2016

ORGANISED BY

WAY FORWARD

- Sea level trend prediction in the next 10 years
- Information from this project early mitigation plan
- Further investigation of sea surface temperature
- Altimetry data processing expertise

CONCLUSION

- Study able to predict the sea level trend of Brunei Darussalam
- Sea level trend for Brunei Darussalam rising approximately at the rate of 5.5mm/year between 2002-2016
- Satellite altimetry has high potential for sea level study in Brunei Darussalam

FIG WORKING WEEK 2019 22–26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

THANK YOU!

hifney.rahman@survey.gov.bn

