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SUMMARY  

 

A guidance and information system based on Wi-Fi signals using fingerprinting for 

localization is currently under development for the whole University campus of TU Wien 

(Vienna University of Technology). In a first step, the availability, performance, and usability 

of Wi-Fi in selected areas of the University are analyzed. For this purpose, Wi-Fi received 

signal strengths (RSS) of the surrounding access points (APs) were measured in front of the 

main building of the University, in the library and in a large multi-storey office building 

called Freihaus under real conditions. The measurements were carried out in static, kinematic 

and stop-and-go mode with six different smartphones. In this paper, the kinematic 

measurements of users walking along predefined trajectories are analyzed. Kinematic 

measurements, however, pose much greater challenges than the usual static or stop-and-go 

measurements. The analysis of the system training measurements showed that there are 

sufficiently stable signals available everywhere on the campus to carry out a position 

determination using Wi-Fi fingerprinting. A probabilistic fingerprinting approach based on 

the Mahalanobis distance was then applied. The resulting deviations from the ground truth in 

the positioning phase were in the range of 1 to 3 m in the Freihaus office building. A 

significant dependence of the results in the kinematic mode, however, is caused by the 

duration of a single Wi-Fi scan. The durations were in the range of 2.4 to 4.1 s depending on 

the used smartphone. This can result in different accuracies for kinematic positioning, as 

fewer measurements along the trajectories for interpolation are available for a device with 

longer scan duration. 

 

 

KURZFASSUNG  

 

Ein campusweites Führungs- und Informationssystem für die Technische Universität Wien 

soll durch die Nutzung von WLAN-Signalen und der Positionierungsmethode Fingerprinting 

realisiert werden. In einem ersten Schritt werden daher die Verfügbarkeit, Leistungsfähigkeit 

und Nutzbarkeit von WLAN in ausgewählten Bereichen untersucht. Für diesen Zweck 

wurden die WLAN-Signalstärken vor dem Hauptgebäude am Karlsplatz, in der 

Universitätsbibliothek sowie im Freihaus-Bürogebäude unter realen Bedingungen gemessen. 

Die Messungen wurden dabei statisch, kinematisch und im Stop-and-Go Modus mit sechs 

verschiedenen Smartphones durchgeführt. In diesem Beitrag werden die kinematischen 



  

Messungen entlang von vordefinierten Trajektorien, die mit normaler Schrittgeschwindigkeit 

abgegangenen wurden, analysiert. Kinematische Messungen stellen jedoch eine wesentlich 

größere Herausforderung dar als die üblichen statischen bzw. Messungen im Stop-and-Go 

Modus. Die Analyse der Trainingsmessungen zeigte, dass genügend stabile WLAN-Signale 

campusweit für die Positionierung mittels Fingerprinting vorhanden sind. Für das 

Fingerprinting wurde ein probabilistischer Ansatz mit Berechnung der Mahalanobis-Distanz 

gewählt. Die ermittelten Abweichungen der berechneten Positionen zu den Sollwerten in der 

Positionierungsphase lagen im Freihaus-Gebäude bei 1 bis 3 m. Eine signifikante 

Abhängigkeit der Ergebnisse vom Smartphone zeigt sich jedoch bei den kinematischen 

Messungen durch die unterschiedliche Dauer eines einzelnen WLAN-Scans. Diese lag 

durchschnittlich im Bereich von 2,4 bis 4,1 s und kann damit zu unterschiedlichen 

Genauigkeiten für die kinematische Positionierung je nach verwendetem Endgerät führen, da 

bei einer längeren Scandauer weniger Messwerte entlang der Trajektorie für eine Interpolation 

zur Verfügung stehen.  
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1. INTRODUCTION  

 

TU Wien (Vienna University of Technology) is the largest scientific-technical research and 

education institution in Austria. With its four inner-city locations (main building at Karlsplatz, 

campus Getreidemarkt, Gußhaus and Freihaus) as well as a science center further away from 

the city center, the University has more than 12,000 rooms in 30 buildings on an area of 

approximately 269,000 m2 available. With such a large number of buildings and rooms, a 

positioning and navigation system can be a helpful tool to orientate yourself on campus and in 

the surrounding city. The motivation of this study is therefore to help students, employees, 

and visitors of the University to find classrooms, offices, and other rooms as well as even 

bookshelves in the library with the help of a mobile device. Thus, the positioning and 

navigation system has to be integrated into the University’s and the library’s information 

system. 

 

In recent years, a number of technologies and methods have been developed and improved for 

indoor positioning. One of these technologies is based on the use of Wireless Fidelity (Wi-Fi). 

As such infrastructure is already installed in most public buildings and therefore costs are low, 

it is one of the most researched technologies for indoor positioning. Thereby positioning can 

be made either cell-based, by lateration or fingerprinting. In particular, location fingerprinting 

has proven itself in practice. It is an approach from the field of pattern recognition and based 

on received signal strength indicator (RSSI) measurements of the surrounding Wi-Fi Access 

Points (APs) in an off-line training and an on-line positioning phase. During the training 

phase, the RSSIs of the surrounding APs are measured in the area of interest at reference 

points to built-up a fingerprinting database, which can be visualized by signal strength radio 

maps. For the positioning in the on-line phase, the measured fingerprint is then compared at 

an unknown location with those in the empirically determined radio map. Finally, the position 

in the radio map that best matches the on-line RSS measurement is returned. The radio map 

can also be created using a propagation model, which can be very complex. A disadvantage of 

the empirical method, however, may be the time required to set up and maintain the database. 

In addition, the measurements must be carried out again during the installation of a new 

transmitter or other structural changes. Another challenge is the large variation of the 

observed RSS values due to signal fluctuations (Retscher, 2020). Despite these disadvantages, 

fingerprinting is nowadays one of the most popular method for an indoor positioning system 

(see e.g. Chen et al., 2012; Liu et al., 2007). 

 

The paper is structured as follows: In section 2 the test site and the measurement procedure 

are introduced followed by a discussion of the creation of the fingerprinting radio map in 

section 3. Section 4 presents an analysis of different scan durations of the employed 



  

smartphones and section 5 the major results obtained in the positioning phase for localization 

in kinematic mode. Section 6 discusses the major findings followed by conclusions and an 

outlook in section 7.  

 

2. TEST SITE AND MEASUREMENT PROCEDURES 

 

Training measurements were carried out in front of the main building at Karlsplatz, in the 

University library and the Freihaus building along predefined trajectories with reference 

waypoints at decision points, such as trajectory crossings, and at irregular intervals depending 

on the local conditions. During the kinematic measurements, a time stamp was set at the 

waypoints when the user passed, in order to be able to interpolate the RSSI at these points. 

The part of the trajectory with its waypoints on the second floor in the Freihaus building is 

shown in Figure 1. The trajectory has a length of about 243 m and starts in front of the main 

entrance leading to the offices and classrooms of our department. Outside the area of the 

department the distances between the selected waypoints are between 5 and 14 m. Since there 

are many offices in the area of our group, the waypoints are at shorter distances between 3 to 

6 m in front of each office along the corridor. The users walked along the trajectories with an 

average walking speed of 1 ms-1 in both ways back and forth taking around 4 minutes for the 

whole trajectory. Apart from measurements in kinematic mode, also stop-and-go and static 

observations were carried out along the trajectory and on the waypoints. For the analyses, also 

cells (denoted with blue Roman numbers in Figure 1) were defined consisting of different 

numbers of waypoints in dependence of the local conditions. Six APs on the ground floor and 

41 APs on the entire second floor can be sensed. In the whole area, a total of 136 stationary 

APs were observed, of which 82 were from the two University networks. One of these is the 

communication network from the University (TUnet) and the second the so-called Geosensor 

network of our group; both having different hardware for the APs. 

 

 
 

When considering the availability of the Wi-Fi signals in the Freihaus building (see Figure 2), 

the difference between the ground and second floor is obvious. At waypoints 3 to 10 and 37 to 

39 located on the ground floor, significantly fewer Wi-Fi signals are received per scan than at 

the waypoints located on the second floor. In this area, sufficient signals can be sensed in 

Figure 1. Waypoints and segmented cells on the second floor in the Freihaus building 



  

order to be able to perform fingerprinting in a meaningful way. On average, 46 stationary 

TUnet signals per scan were measured in the building. It is also visible in Figure 2 that the 

difference between all signals and the ones from the TUnet is greatest at those waypoints 

located in front of the building (waypoints 1 and 2) as more other APs not belonging to the 

University networks are visible.  
 

 
 

Figure 2. Average number of signals per scan on all trajectory waypoints 

 

3. CREATION OF THE FINPRINTING RADIO MAP  

 

In order to know the RSSIs and variances of the APs not only at the waypoints, but also in the 

whole test site, an area-wide interpolation is carried out for each AP for both the RSSI values 

and the variances. Different interpolation methods can be used for this purpose (see e.g. 

Retscher and Leb, 2019). An interpolation by natural neighbours, also referred to as Voronoï 

interpolation, is used in this work (Ledoux and Gold, 2005; Lee and Han, 2012; Üreten et al., 

2012). The grid width of the interpolated radio maps is set to 1 m, which results in that 

positioning can be carried out within meter accuracy. As examples, Figure 3 shows the radio 

maps of two APs, one from the Universities communication network TUnet and one from the 

Geosensor network for the 2.4 and the 5 GHz frequency bands. As can be seen, the different 

frequency band of the signal shows a significant influence. Although the two APs are only 

1 m apart, the AP of the Geosensor network has a greater range and is also more strongly 

received at all waypoints. For example, the RSSI of this AP at waypoint 28 is almost 31 dBm 

stronger than the other AP of TUnet. The reason for this large difference is due to the 

hardware of the AP, since the AP from the Geosensor network come from a different 

manufacturer (D-Link) than those from TUnet (Cisco systems). With the 5 GHz signal, 

however, the difference is no longer quite as large, but still amounts to almost 13 dBm at 

waypoint 28. Another important finding in the investigation of the radio maps is that the 

database created either from static, stop-and-go and kinematic measurement methods have a 

high similarity in both RSSIs and variances. For future work, this also means that continuous 

system training can be carried out, which means that the training phase is much shorter. 



  

 

 
 

4. ANALYSIS OF DIFFERENT SCAN DURATIONS  
 

Figure 4 shows RSSI time series for two smartphones in a kinematic measurement run. Every 

smartphone needs a certain amount of time to perform a single Wi-Fi scan. These can be very 

different in length, as has been the case with the six different devices used (see Table 1). In 

Figure 4, therefore, the series of the two smartphones with the shortest and longest scan 

duration are shown. Although more scans along the trajectory can be performed with the 

OnePlus 5T smartphone than with the Sony Z3 due to shorter scanning duration (201 versus 

115 scans), a high similarity between the two-time series can be observed with a correlation 

coefficient of 0.96. But for kinematic positioning in the on-line phase, the scan duration has a 

significant influence, as shown in the following. In some kinematic measurements, it was 

found that individual scan durations sometimes deviate too much from the average scan 

durations. Figure 5 shows such irregular scan durations. It can be seen that, among other 

things, the Sony Z3 has some longer scanning times of approximately 15 seconds. The 

Nexus 5X, on the other hand, performs many scans with a measuring time of only a few 

milliseconds. These irregular scanning times are examined in more detail below. 

Figure 3. Radio maps of the 2.4 GHz (above) and 5 GHz (below) frequency bands for the AP 

DA02-13 from the University network (left) und GEO-1 from the Geosensor network (right) 



  

 
 

Figure 4. RSSI series along the trajectory in the Freihaus building for two smartphones 
 

 
 

 
 

Figure 5. Irregular scan durations of the two smartphones Nexus 5X and Sony Z3 

 

The short scan durations of the Nexus 5X are shown in Figure 6 together with the measured 

signal strengths. The RSSI are from the 5 GHz signal of the same AP as in Figure 4. As 

shown in Figure 6 (top), the irregular scanning periods begin between waypoints 6 and 7. The 

pattern is always the same: first a slightly longer scan occurs, then a series of scans with a 

short scan duration, whereby the total duration of these scans corresponds to the average scan 

duration. Then follow two scans with a normal scan duration and finally a series of short 

scans begins. The reason for this could not be clarified and was only found with the 

smartphone scan duration [s] 

Nexus 5X 3.8 

OnePlus 5T 2.4 

Samsung S3A 3.5 

Samsung S3B 3.5 

Samsung S7 2.5 

Sony Z3 4.1 

 Table 1. Average scan duration of the six employed smartphones 



  

Nexus 5X. The problem with this is that during these short scans the RSSI values do not 

change, which does not correspond to the reality. For this reason, the scans were eliminated 

with a short measurement duration, which, however, results in a scan gap from one scan (see 

Figure 6 (below). 
 

 
 

Figure 6. Kinematic measurements with short scan durations 

 

The three longer scan durations of the Sony Z3 are shown enlarged in Figure 7 together with 

the Samsung S3A, which performed the measurement at the same time. As can be seen, the 

Sony Z3 is located near waypoints 7, 9 and 16 for longer scanning times of approximately 

15 seconds, which means that no Wi-Fi scan was performed at an average walking speed of 

1 ms-1 along 15 m. Therefore, no Wi-Fi scans are performed near waypoints 8, 10, 11, 17 and 

18. In this case, the interpolation still provides approximately the same values as with the 

kinematic measurement with the Samsung S3A. However, this does not occur in general. If, 

for example, no Wi-Fi scans were carried out between waypoint 11 and 14, the interpolation 

would estimate too high RSSI values for the waypoints in between. The reason for the above-

average length of time is that the smartphone, if it is not connected to any Wi-Fi network, 

automatically tries to connect to known networks. This connection trial can also take longer, 

which means that the Wi-Fi scan is performed longer. Therefore, the measurements on each 

smartphone should deactivate the automatic Wi-Fi connection for each network. Now one can 

ask the question, how long the maximum scanning time may be, so that an interpolation is 

still meaningful. If there is a longer scan time between two waypoints, which are far apart, 

then the longer scan time does not have any influence on the interpolation. The maximum 

possible scanning time therefore depends on the distance between the waypoints respective 

the spatial conditions. If two waypoints are close together, it can be assumed that the signal is 

similarly strong. If they are several meters apart, the RSSI values can vary significantly 

depending on the spatial environment and the interpolation may no longer provide meaningful 

values. Therefore, in kinematic off-line training measurements, care must be taken whether 

and where longer scanning times occur. The smartphone should always perform a scan in the 



  

immediate vicinity of each waypoint. Since the fingerprint database in this work consists of 

many scans and these irregular scan durations only occurred in a few measurement runs, these 

scanning delays have no significant effect on the positioning results. If a long scan occurs in 

the on-line positioning phase, it is clear that no positioning can be carried out during this time, 

as no Wi-Fi signal strengths are available.  

 

 
 

Figure 7. Kinematic measurements with long scan durations 

 

5. POSITIONING PHASE FOR KINEMATIC MEASUREMENTS  

 

For fingerprinting in this work, a probabilistic approach based on the calculation of the 

Mahalanobis distance is applied. The derivation of this approach can be found e.g. in Yeung 

et al. (2007). It is based on Bayesian filtering where Bayes’ theorem (see e.g. Gordon et al., 

1993; Koch, 2000) is employed. A posterior probability density function (PDF) can be 

calculated because of the fact that the fingerprints contain information about the signal 

characteristics. The Mahalanobis distance Ὠ  has the form:  
 

Ὠ █ ȟ█ █   █ ╒
ȟ
█   █  (1) 

 

where █  is the assigned RSSI measurement to a position █  in the radio map and 

╒
ȟ
 its empirical covariance matrix. 

 

As the inverse of the covariance matrix is the weight matrix, the weighted square sum of the 

RSSI differences (between off-line training and on-line positioning phase) is calculated for 

the Mahalanobis distance. Then the weights are inversely proportional to the variances of the 

corresponding fingerprints. If the covariance matrix is the unit matrix, the Mahalanobis 

distance Ὠ corresponds to the Euclidean distance, which is most commonly used in the 

deterministic fingerprinting approach (see e.g. Honkavirta et al., 2009; Moghtadaiee and 

Dempster, 2015). A large number of studies, however, have shown that probabilistic 



  

fingerprinting offers a higher accuracy than the deterministic approaches in indoor 

positioning, as they take better account of signal fluctuations. This is why the Mahalanobis 

distance is used here in this work.  

 

The Figures 8 show two estimated trajectories of the best and worst measurement run. It is 

evident that the positions have been determined in the correct order and that the resulting 

trajectories can be reconstructed well. The deviations of the estimated positions from the 

ground truth in the kinematic measurements are in the range of 0.8 to 2.6 m and amount to 

1.6 m on average; the median is only 1.0 m. The biggest deviations occurred with the 

smartphone Sony Z3 with a median of 2.5 m and a maximum value of 10.0 m. This is due to 

the longer duration for a single RSSI scan (4.1 s on average; compare Table 1). The results of 

the Samsung S7 smartphone with a scan duration of 2.5 s show on average the smallest 

median of only 1.0 m.  

 

The maximum deviation of 11.0 m occurred at waypoint 20 for the Samsung S3B smartphone 

in all runs. In Figure 9, the position determination for this waypoint is analyzed by displaying 

the calculated Mahalanobis distance for the measurements. For the first, more precise 

measurement (Figure 9 above), the calculated position is 5.0 m away from the ground truth. 

The difference in the Mahalanobis distance between the true and the estimated position is 

approximately 8 dBm. In the second, more inaccurate result (Figure 9 below), the position is 

determined too far to the right as at the true location the calculated Mahalanobis distance is 

111.6 dBm and at the estimated position 52.3 dBm. In summary, it can be said that in general 

in the Freihaus building the position on each waypoint can be well determined, which is due 

to the high number of visible APs.  

 

6. DISSCUSSION OF THE MAJOR FINDINGS  

 

The aim of this work was the development of a campus-wide positioning system at TU Wien 

with an emphasis on the indoor areas. Indoor positioning poses a number of challenges, 

especially in large and complex buildings. For example, several effects such as signal 

attenuation signal fluctuations, interference and multipath play a decisive role in signal 

propagation. The RSSIs, the SSIDs (Service Set Identifier) and the associated MAC (Media 

Access Control) addresses of the Wi-Fi signals can be retrieved without an authenticated 

connection and are thus freely available. This has the advantage that positioning can be 

carried out autonomously at the users’ side, thus avoiding data protection concerns that 

typically occur with other positioning technologies. For positioning using Wi-Fi 

fingerprinting, it is essential that there are sufficient APs in the building and that they are well 

distributed throughout the building. An initial analysis showed that there are sufficient signals 

at each reference point in the selected measuring area.  



  

 
 

Figure 8. Kinematic positioning result with the Samsung S7 (above) and the Sony Z3 (below) 

 

A long-term measurement showed large temporal variations in signal strengths and signal 

noise. It was found that fluctuations of up to ±5 dBm can occur during the day. At night, the 

signals are much more stable. The greater the number of people in the building, the greater the 

variation in the signals. One reason for this is the multipath effect caused by short-term 

obstacles (people or even opening or closing of doors, etc.) and, on the other hand, the 

dynamic transmission power of the APs which also depends on the number of Wi-Fi users. 

Measurements in different orientations have also shown that the human body can greatly 

weaken the Wi-Fi signal when it is between the smartphone and the AP. It is interesting to 

note that the attenuation on the 5 GHz frequency band is slightly stronger than on that of the 

2.4 GHz band. For this reason, the off-line measurements on a reference point were always 

carried out in several orientations (mostly in all 4 or in 2 in the possible direction of 

movement), which enabled the influence of the human body to be reduced. 



  

 
 

Figure 9. Mahalanobis distances for two results obtained with the Samsung S3B  

on waypoint 20 

 

For the time being, the off-line measurements were stored separately for static and kinematic 

measurements in separate databases. To compare these measurement methods and databases, 

the differences in the mean signal strengths were calculated for each checkpoint and access 

point. In addition, the correlation coefficient between pairs of the same APs was calculated. 

On the one hand, the database with the averaged RSS values was used and, on the other hand, 

their variances. The mean correlation coefficients and differences between the databases are 

shown in Table 2. In terms of RSS values, the databases hardly differ and show a high 

correlation with another. The mean difference between pairs of the same APs is also very low. 

For the variances, the correlation with the kinematic measurements is slightly weaker. This is 

probably due to the lower number of off-line measurements (60 scans per checkpoint) with 

this observation method. All in all there are no significant differences between the databases, 



  

which is why the databases were combined for the subsequent creation of the radio maps and 

position determination. This means that kinematic training measurements can be used similar 

to static measurements. Their advantage is that the time required for building-up the database 

is much less.  

 
 

When looking at the visibility of the APs at various waypoints, it was found that the greater 

the signal strength of an AP, the more often this AP is also visible. When viewing the radio 

maps, it was also found that the range of a Wi-Fi signal depends on the location and design of 

the AP as well as on the spatial situation. Furthermore, the frequency band also plays a 

decisive role.  

 

The Mahalanobis distance, i.e., the distance between on-line and off-line fingerprint, was used 

to determine the position of the user. Ideally, the Mahalanobis distance near the correct 

location is very short and increases with distance. This means that the position with the 

shortest distance is the location searched, i.e., the nearest neighbour. In a further step, it was 

examined whether the position determination improves when several neighbours (kNN 

neighbour method) are used. However, there has been no significant improvement in the study 

area. The determined Mahalanobis distance could also serve as measure of integrity. If the 

Mahalanobis distance exceeds a certain value, then the calculated result is invalid, and a new 

scan must be performed. 

 

The trajectories were reconstructed very well with deviations of the estimated positions from 

the ground truth in the range of 1 to 3 m. A dependence on the results is seen caused by the 

different scan duration of the devices. Those smartphones with the longest scanning time have 

achieved the lowest accuracy. This is due to the necessary interpolation between the Wi-Fi 

scans in the kinematic measurements. If a calibration of the different smartphones is 

performed, the device-dependent sensitivity is reduced. 

 

7. CONCLUSIONS AND OUTLOOK  

 

The investigations at TU Wien have shown that Wi-Fi fingerprinting can be used to achieve 

positioning with meter accuracy with the already available hardware for the APs. A further 

increase is expected if additional hardware is deployed, such as cost-effective Raspberry Pi 

units which can broadcast Wi-Fi signals as well. This is especially a promising approach for 

areas with lower positioning accuracy. Furthermore, with regard to the distribution of the 

 
RSSI variances 

rə də [dBm] rə də [dBm] 

static ï kinematic 0.95 0.4 0.88 3.9 

static ï stop-and-go 0.99 0.3 0.96 2.6 

kinematic ï stop-and-go 0.95 0.4 0.88 4.0 

 
Table 2. Mean correlation coefficient (rə) and difference (də) between the databases 



  

waypoints along the pre-defined trajectories, it may be useful to expand the network. This is 

currently under way to achieve a finer grid for the radio maps. 

 

With the latest generation of Wi-Fi hardware, the Round-Trip Time (RTT) between the APs 

and mobile devices can also be measured (see e.g. Van Diggelen et al., 2018; Guo et al., 2019; 

Horn, 2020). Wi-Fi RTT is a promising method for the future at TU Wien which would 

improve the achievable positioning accuracies. However, new hardware for the AP would be 

necessary and Android version 9 or higher on the smartphones. An implementation for the 

hardware of the APs can be done with the previously mentioned Raspberry Pi computers. 

However, RSSI fingerprinting will continue to have its legitimacy in view of non-existent, 

campus-wide coverage with new hardware which would not be economically justifiable. A 

combination with Wi-Fi RTT will therefore be effective. New algorithms are needed for such 

an integration and will be developed.  
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