

11–15 SEPTEMBER 2022 Warsaw, Poland Volunteering for the future – Geospatial excellence for a better living

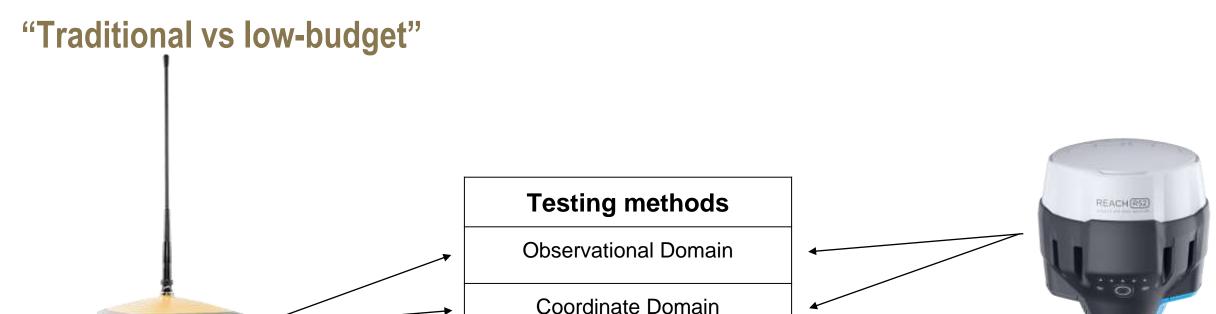
Accomparison of survey-grade GNSS receivers by means of observation and coordinate domain approaches; traditional vs low-budget

By Ola Øvstedal, Isak Foss Ingebrigtsen, Tobias Arnell, Simen Walbækken Tangen and Bjørn-Erik

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Introduction and overview



11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Traditional

Low-Budget

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

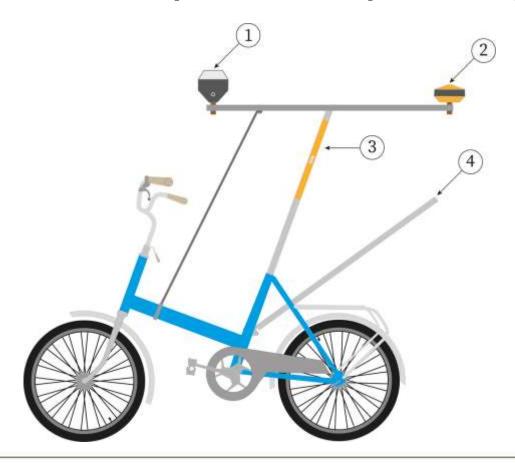
Test-setup for the observation and coordinate domain

Static

- Two hours data collection
- Observation domain analysis

Kinematic

- 22 control points
- Real world scenario
- Varied visibility
- Observation and coordinate domain analysis



11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future -Geospatial excellence for a better living

Kinematic platform and processing methods

Kinematic platform:

- Emlid receiver
- Topcon receiver
- Tube level
- Support rod

Processing methods:

- Canadian Spatial Reference System Precise Point Positioning
- CPOS Real Time Kinematic

XXVII FIG CONGRESS 11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Results

Observation domain (Static observation)

The static observation domain analyses were done in GPS, GLONASS, Galileo and BeiDou. Only results from GPS are shown here.

	EMLID [GPS]	TOPCON [GPS]
Number of satellites	10	15
Total number of observations	44149	63361
Overall standard deviation for code multipath on the first frequency [m]	0.294	0.202
Overall standard deviation for code multipath on the second frequency [m]	0.369	0.298
Number of cycle-slips	720	6
Relative number of cycle-slips [%]	1.412	0.009

XXVII FIG CONGRESS 11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Results

Coordinate Domain (Kinematic observations)

	EMLID	TOPCON
RTK Standard deviation	0.049 m	0.051 m
PPP Standard deviation	0.551 m	0.031 m

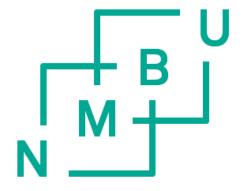
- Canadian Spatial Reference System-PPP solutions only support GPS and GLONASS.
- The Emlid receiver <u>does not</u> support the anti-spoofing technology to track the encrypted P(Y)code broadcasted by GPS satellites. Therefore, the Emlid has fewer dual frequency observations than the Topcon in the PPP solutions.

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future -Geospatial excellence for a better living

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living


Volunteering for the future – Geospatial excellence for a better living

11-15 SEPTEMBER 2022 Warsaw, Poland

Thanks to our donors

Norwegian University of Life Sciences

11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Our paper

For more in depth information, read our paper!

QR code to our paper:

