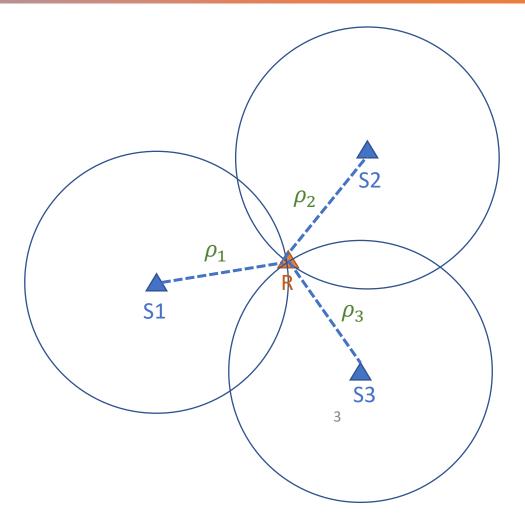
kurloo

Low-cost GNSS solution to densify the national terrestrial reference frame stations

Presenter: Ryan Keenar Co-authors: Jun Wang, Lee Hellen, Wenzong Gao, Charles Wang

66 Basic Principle of GNSS Positioning



Basic principle of GNSS positioning

"Positioning" in a 2D space

Positions of points S1, S2, and S3 are known

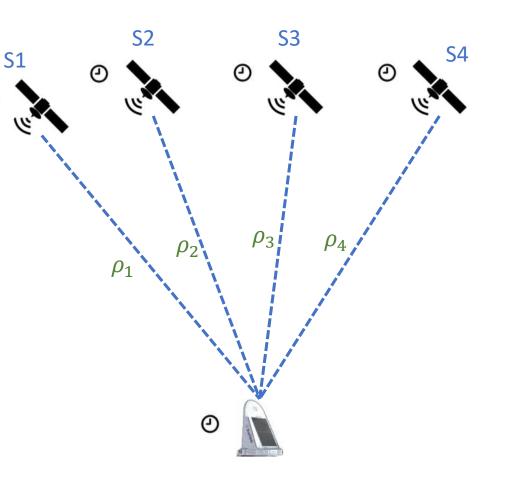
If the distances from points S1, S2, and S3 to point R are measured, the position of R can be determined.

 ρ_n : Range between point S_n and point R

Basic principle of GNSS positioning

Positioning in the ideal 3D space

Assume:

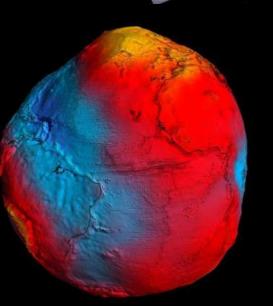

- 1. Positions of satellites are accurately known
- 2. Clocks on satellites and receiver have no bias
- 3. Signal is transmitted in the vacuum

 $\rho = c * \Delta t$

ho: Range between satellite and receiver

c: Speed of signal transmatting in vacuum

 $\Delta t: Time \ difference \ between \ satellite \ and \ receiver$



Orbit and clock variations

Because the system takes measurements based on the speed of light – big number – tiny variations in orbit position and satellite clock time has a big effect on a calculated position on Earth.

The "pressure" of sunlight on the satellite can push it away from the Sun

The Earth changes shape – Solid Earth Tides – in response to the gravitational pull of the Sun and Moon. The power of the satellite's transmitter can create a pushing force.

The movement of the moon and other bodies have gravitational effects on the satellites.

The systems within the satellite itself have "biases" – delays in time on signals due to the physical creation of the signal within the electronics.

Satellites carry very accurate clocks, but even they will drift a little over time and need to be corrected.

The Earth is not a perfect sphere – it's fatter round the middle and has "lumpy" gravity.

End of the lonosphere at ~2,000km

Atmospheric effects The Troposphere and Ionosphere

The irregular electron density in the Ionosphere can cause phase and amplitude fluctuations in the GNSS signal so degrading its accuracy. The Ionosphere is dispersive – it delays radio of different frequencies by different amounts.

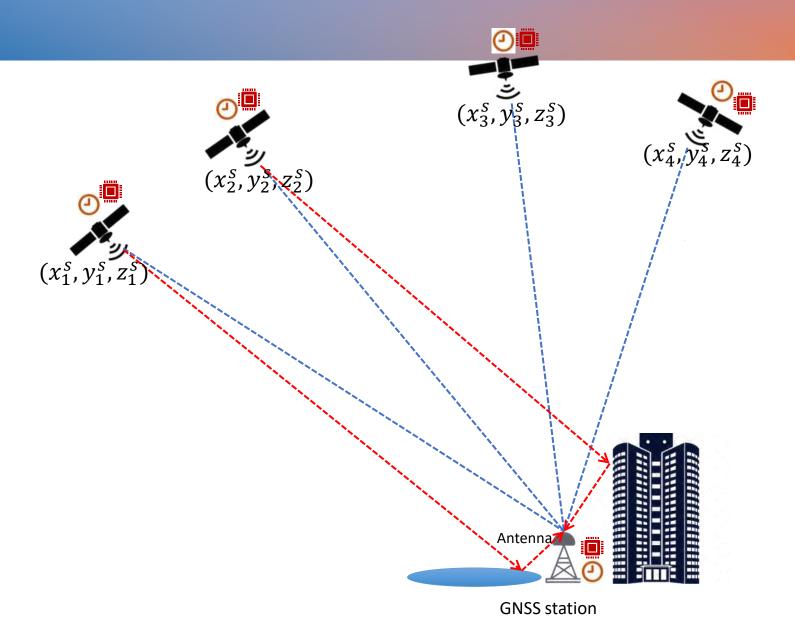
The start of the lonosphere at ~85km
The Mesosphere and Stratosphere The
Troposphere up to 18km
The surface of the Earth

The Troposphere gives the Earth its weather. It's a layer up to 18km thick that contains 75% of the Earth's atmosphere and 99% of the water vapour. It both delays and refracts GNSs signals.

The Troposphere is not ionised – it does not contain free electrons. The Troposphere is not dispersive – it delays radio of all frequencies by an equal amount.

The Troposphere hydrostatic (dry) delay is caused by dry gases and particles in the troposphere, and it is about 80–90% of the total tropospheric delay. Hydrostatic delay can be precisely determined from surface pressure measurements using empirical models. The tropospheric wet delay is due to water vapor content in the troposphere, and is difficult to precisely model.

The lonosphere is a shell of electrons and


radiation from the Sun.

electrically charged atoms and molecules that

surrounds the Earth. It exists primarily due to ultraviolet

Rupert W Brown July 2021

KEY GNSS POSITIONING ERROR SOURCES

Satellite-dependent

- Hardware delays
- Satellite clock biases
- Satellite ephemeris biases

Propagation-dependent

- Ionospheric delay
- Tropospheric delay

Receiver-dependent

- Hardware delays
- Receiver clock biases
- Multipath errors

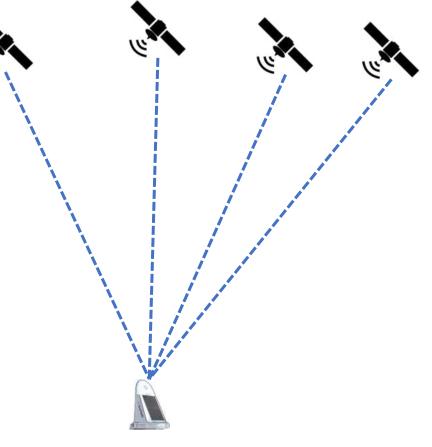
Difference between RTK and PPP

PPP

 $P_r^s = \rho_r^s + c \left(\delta \tau_r - \frac{\delta \tau^s}{2}\right) + T_r^s + I_r^s + d_r + \frac{d^s}{2} + \frac{\partial^s}{2} + \varepsilon_r^s$

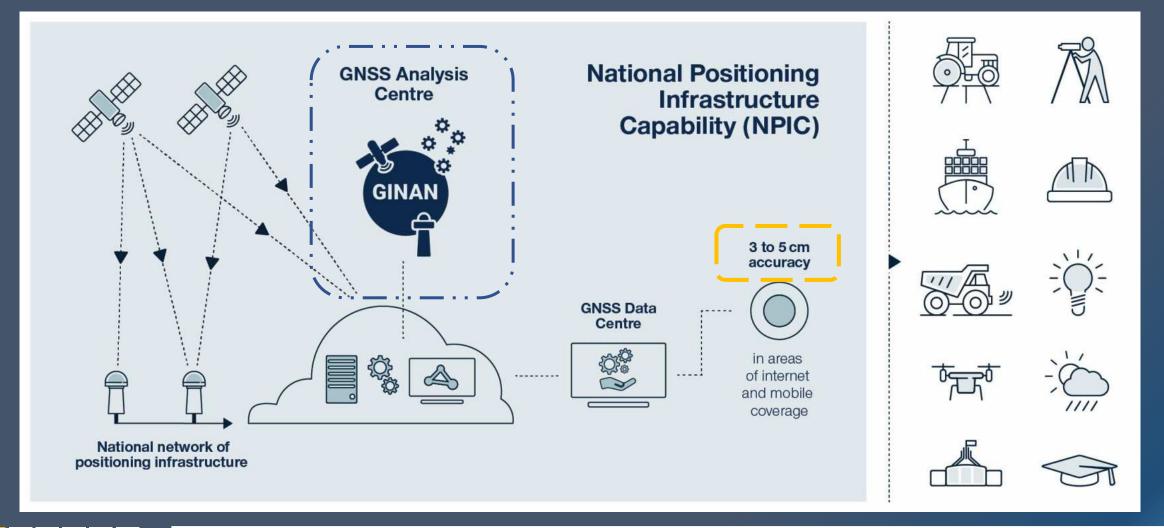
All the errors should be carefully corrected or estimated through models or available products (FIN, RAP)

Main differences between RTK and PPP:


1. In terms of error and bias correction method RTK: use differenced observations PPP: through models and products

2. In terms of timeliness

RTK: real-time PPP: post-processing (PPP-RTK can obtain real-time results, but it is not supported in GINAN Version 2)


3. In terms of results

RTK: the derived position is relative to reference station PPP: independent absolute position

Precise Point Positioning

Introduction of GINAN and CSRS-PPP

Ginan is an open source toolkit for creating precise point positioning (PPP) analysis products, correction streams and positions. It is being actively developed in a Geoscience Australia Positioning Australia program.

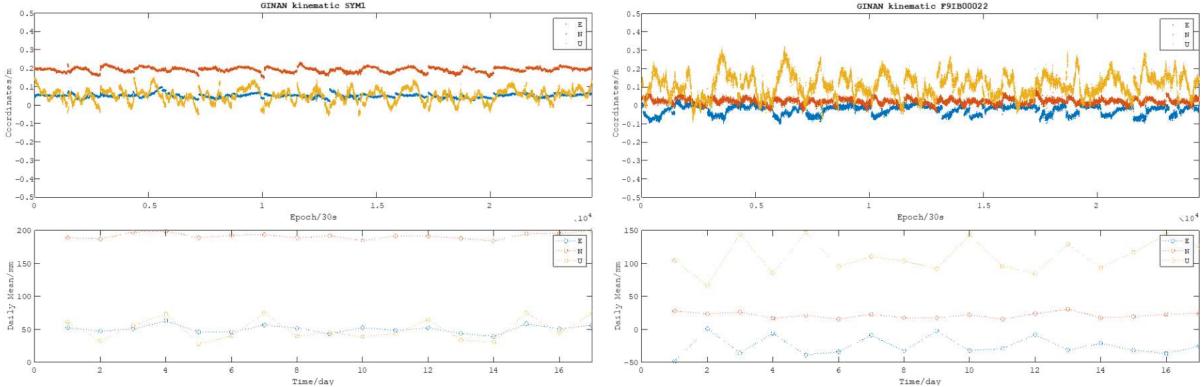
CSRS-PPP is an online application for GNSS data post-processing. It uses precise satellite orbit, clock and bias corrections derived from a global network of receivers to determine accurate user positions anywhere on the globe, regardless of proximity to reference stations.

According to Vázquez-Ontiveros, J.R., et al (2023), the CSRS is one of three best PPP processing software in the world. Therefore, we set the CSRS-derived results as benchmark.

Auto-run of GINAN

Developed a Python script for automatic PPP processing using GINAN

root@ldac772d269b:/data/scripts# python3 auto_run.py --help Usage: auto_run.py [OPTIONS]


Options: Station name [required] -s. --sta TEXT Start date of the obs to be processed -sd, --start_date TEXT [required] -ed, --end_date TEXT End date [required] -cf, --configure_folder TEXT Path of folder containing configuration files [default: ../configs] Path of folder containing observation files -of. --obs folder TEXT [default: ../obs] -od, --obs_dateformat TEXT Date formate for the obs files [default: %Y-%m-%dl -pf, --pro_folder TEXT Path of folder containing products (SP3, CLK, ERP, BIA) files [default: products/] -pp, --pro_provider TEXT Institution name [default: COD] Products type (FIN, RAP, ULT) [default: FIN] -pt, --pro_type TEXT -t. --template TEXT The yaml template for GINAN processing [default: PPP_template.yaml] -m, --ppp_mode TEXT PPP processing mode [default: kinematic] Time interval for obs [default: 15] -i. --interval INTEGER -e, --epochs INTEGER Number of epochs to be processed [default: 1440] -c. --consellation TEXT Consellations applied in processing [default: GE1 -y, --yamlfile TEXT Path(name) of derived yaml file [default: out.yaml] -on, --out_folder_name TEXT Name of the folder containing derived results --help Show this message and exit.

Comparison of Kurloo and GA receiver

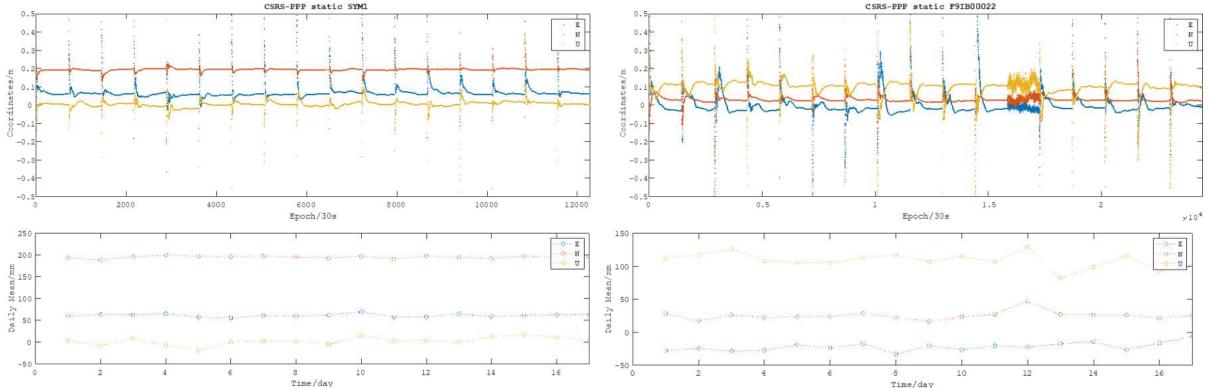
51

GINAN Kinematic results

Location: GA Mode: Kinematic		Max –	Min (mm)		STD of	daily mear	ns (mm)	STD of raw time series (mm)			
Date: 06/07/2023 – 22/07/2023		E	Ν	U	E	Ν	U	E	Ν	U	
Number of days: 17	SYM1	24.0	15.9	46.8	6.1	4.8	16.9	10.7	12.8	35.3	
Interval: 15s Obs hours per day: 6h	F9IB00022	49.3	15.2	80.5	14.1	4.4	24.3	25.0	15.9	61.5	

Antenna type on SYM1: TRM59800.00

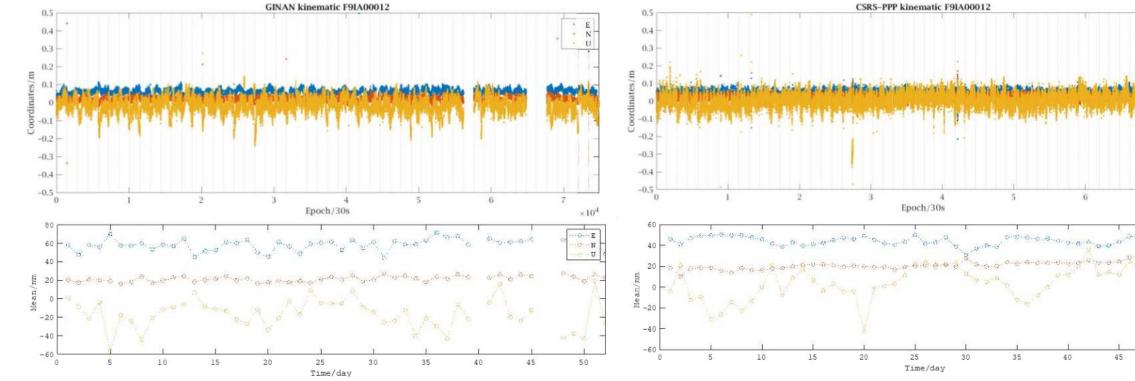
GINAN Static results



Location: GA		Max – Min (mm)				STD of daily means (mm)			STD of raw time series (mm)		
Mode: Static		F	N		-			-			
Date: 06/07/2023 - 22/07/2023		E	N	U	E	N	U	E	N	0	
Number of days: 17	SYM1	14.2	11.5	36.5	3.6	2.9	9.0	3.8	2.9	8.9	
Interval: 15s	F9IB00022	26.7	12.8	56.3	9.0	3.4	14.6	15.0	4.3	19.2	
Obs hours per day: 6h		20.7	12.0	20.0	2.0		1.10	12.0	1.5	17.2	

No phase centre offset and variation corrections for **F9IB00022**

CSRS Static results


Location: GA		Max – Min (mm)				f daily mean	ıs (mm)	STD of raw time series (mm)			
Mode: Static		-			-			-			
Date: 06/07/2023 - 22/07/2023		E	N	U	E	N	U	E	N	U	
Number of days: 17	SYM1	14.2	11.5	36.5	3.6	2.8	9.1	3.9	2.9	9.0	
Interval: 15s	F9IB00022	27.0	30.6	47.5	6.5	6.6	11.6	7.0	7.1	13.4	
Obs hours per day: 6h											

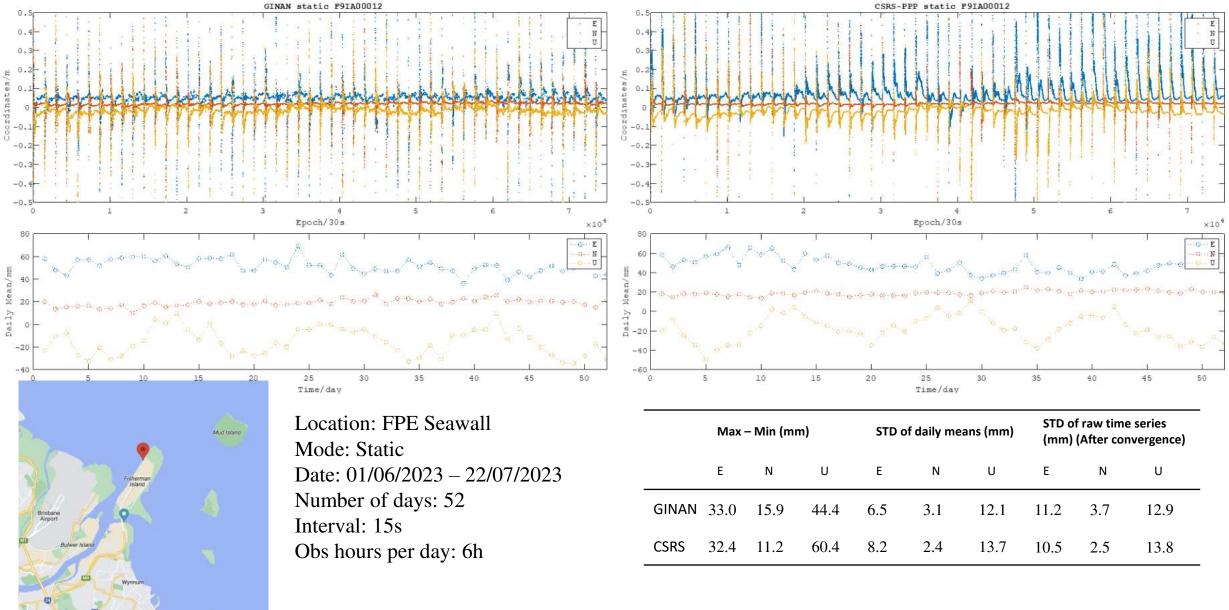
No phase centre offset and variation corrections for **F9IB00022**

66 Results analysis for F9/A00012

Kinematic results for F9IA00012

Location: FPE Seawall Mode: Kinematic Date: 01/06/2023 – 22/07/2023 Number of days: 52 Interval: 15s Obs hours per day: 6h

	Max – Min (mm)			STD c	of daily me	ans (mm)	STD of (mm)	STD of raw time series (mm)			
	E	Ν	U	E	Ν	U	E	Ν	U		
GINAN	27.3	11.2	75.8	6.5	3.0	16.1	16.1	11.2	41.8		
CSRS	19.6	19.6	79.0	4.3	4.0	15.6	14.7	13.4	39.6		

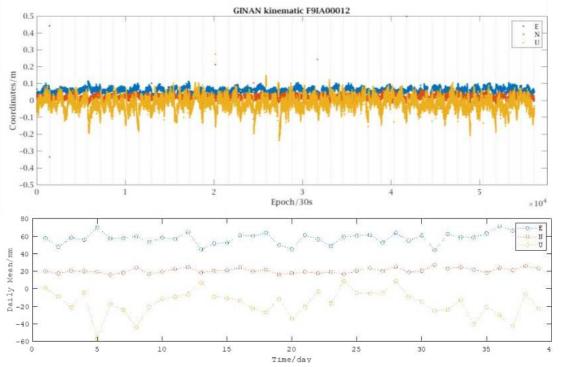

* E

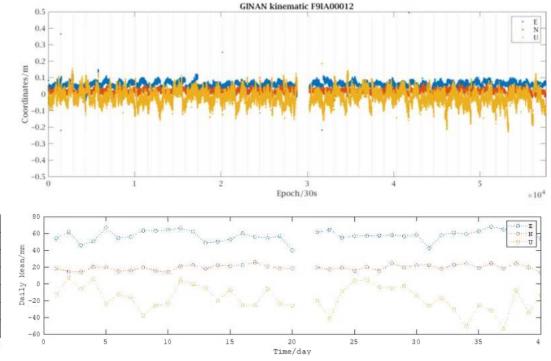
· U

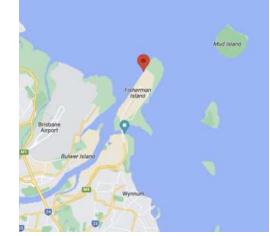
 $\times 10^4$

50

Static results for F9IA00012

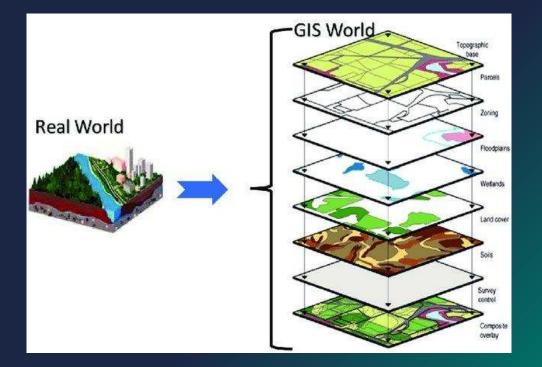



66 Products comparison: FIN or RAP?



FINAL

RAPID


Location: FPE Seawall Mode: Kinematic Date: 01/06/2023 – 11/07/2023 Number of days: 40 Interval: 15s Obs hours per day: 6h

	Max -	– Min (mr	n)	STD o	of daily me	ans	STD o	STD of raw time series				
	E	Ν	U	E	Ν	U	E	Ν	U			
GINAN (FIN)	27.3	11.2	65.6	6.5	2.8	14.5	16.1	11.0	41.5			
GINAN (RAP)	28.2	12.1	60.4	6.5	3.2	15.1	16.8	11.8	43.0			

Station	Location	Date	Processed by	Mode	Products	Max dail	y mean - Min	daily mean	ST	D of daily m	eans	9	STD of raw res	ults
						E	N	U	E	Ν	U	E	N	U
SYM1	GA CORS	06/07/2023 - 22/07/2023	GINAN	Kinematic	COD_FIN	24.0	15.9	46.8	6.1	4.8	30.6	10.7	12.8	35.3
		06/07/2023 - 22/07/2024	GINAN	Static	COD_FIN	14.2	11.5	36.5	3.6	2.9	1.7	3.8	2.9	8.9
		06/07/2023 - 22/07/2025	CSRS	Kinematic	COD_FIN	11.3	12.9	26.7	3.3	3.0	11.5	6.8	6.2	13.3
		06/07/2023 – 22/07/2023	CSRS	Static	EMR_ULT	14.2	11.5	36.5	3.6	2.8	1.7	3.9	2.9	9.0
F9I200006	Benchmarking	01/06/2023 – 22/07/2023	GINAN	Kinematic	COD_FIN	72.2	25.6	131.1	14.5	6.1	61.4	30.6	17.6	68.5
		01/06/2023 - 11/07/2023	GINAN	Kinematic	COD_RAP	91.1	28.6	97.9	19.5	6.5	59.9	33.0	18.3	66.3
		01/06/2023 - 22/07/2023	CSRS	Kinematic	EMR ULT	34.4	20.4	100.6	6.4	4.4	57.1	20.5	18.5	63.7
		01/06/2023 - 22/07/2023	CSRS	Static	EMR_ULT	31.9	22.9	38.5	6.5	5.7	3.3	7.3	5.9	10.5
F9IA00012	FPE Seawall	01/06/2023 - 22/07/2023	GINAN	Kinematic	– COD_FIN	27.3	11.2	75.8	6.5	3.0	37.8	16.1	11.2	41.8
		01/06/2023 - 11/07/2023	GINAN	Kinematic	COD RAP	28.2	12.1	60.4	6.5	3.2	39.6	16.8	11.8	43.0
		01/06/2023 - 22/07/2023	GINAN	Static	COD_FIN	34.0	13.5	45.4	6.7	3.3	5.7	11.7	4.1	14.1
		01/06/2023 - 11/07/2023	GINAN	Static	COD_RAP	27.7	10.9	39.2	5.3	2.7	5.5	10.7	3.4	12.8
		01/06/2023 - 22/07/2023	CSRS	Kinematic	EMR ULT	19.6	19.6	79.0	4.3	4.0	35.0	14.7	13.4	39.6
		01/06/2023 - 22/07/2023	CSRS	Static	EMR_ULT	32.4	11.2	60.4	8.2	2.4	2.3	10.5	2.5	13.8
F9IA00011	Poatina Power Station	01/06/2022 22/07/2022	GINAN	Kinematic	COD_FIN	90.4	64.7	222.7	23.9	13.2	66.9	22.0	26.8	82.4
		01/06/2023 - 22/07/2023	CINAN	Kinomatia		115.0	43.0	215.2	22.5	10.6	70.2	32.9	26.8	83.4
		01/06/2023 - 11/07/2023	GINAN	Kinematic	COD_RAP	115.0		215.3	23.5	10.6	70.3	30.6	24.1	84.8
		25/06/2023 - 22/07/2023	GINAN	Static	COD_FIN	62.4	32.8	164.9	17.0	7.9	24.2	23.1	10.8	38.7
		01/06/2023 - 11/07/2023	GINAN	Static	COD_RAP	72.6	34.1	118.2	13.5	7.1	19.6	18.7	8.6	33.1
		01/06/2023 – 22/07/2023	CSRS	Kinematic	EMR_ULT	176.1	338.2	437.4	25.5	47.9	123.4	42.9	148.3	162.0
F9IA00013	Dunstan Drive, Robina	01/06/2023 - 22/07/2023	GINAN	Kinematic	COD_FIN	113.1	94.9	328.3	21.6	20.8	110.5	39.2	39.4	139.5
		01/06/2023 - 11/07/2023	GINAN	Kinematic	COD_RAP	140.8	113.7	334.1	27.4	23.8	108.3	45.8	43.5	136.9
		01/06/2023 - 22/07/2023	GINAN	Static	COD_FIN	107.9	93.6	315.2	25.0	20.9	25.2	29.9	21.6	86.9
		01/06/2023 - 11/07/2023	GINAN	Static	COD_RAP	128.9	74.1	399.8	24.9	20.7	23.8	29.5	21.4	90.7
		01/06/2023 - 22/07/2023	CSRS	Kinematic	EMR_ULT	150.2	75.4	435.2	39.9	18.9	137.1	102.2	55.8	162.7
		01/06/2023 – 22/07/2024	CSRS	Static	EMR_ULT	66.0	38.9	123.4	15.4	7.9	14.3	16.4	8.7	31.6
F9IA00016	Toowoomba Bypass	15/06/2023 - 22/07/2023	GINAN	Kinematic	COD_FIN	47.4	21.1	70.1	11.7	5.8	54.6	35.6	17.9	59.7
		17/06/2023 - 10/07/2023	GINAN	Kinematic	COD RAP	40.0	20.5	84.1	9.8	6.1	62.8	34.4	17.1	77.4
		15/06/2023 - 22/07/2023	GINAN	Static	COD_FIN	28.2	19.2	55.4	6.9	5.2	6.5	14.3	5.7	13.4
		15/06/2023 - 21/07/2023	GINAN	Static	 COD_RAP	28.2	19.2	55.4	7.0	5.2	6.4	14.3	5.7	13.5
		15/06/2023 - 22/07/2023	CSRS	Kinematic	EMR ULT	140.3	51.2	80.1	29.3	10.7	46.6	69.7	28.2	54.6
		15/06/2023 - 22/07/2023	CSRS	Static	EMR_ULT	44.5	12.5	46.9	11.6	3.6	4.2	14.6	3.7	13.3
F9IB00022	GA Benchmark	05/07/2023 - 22/07/2023	GINAN	Kinematic	COD_FIN	49.3	15.2	80.5	14.1	4.4	55.9	25.0	15.9	61.5
		05/07/2023 - 09/07/2023	GINAN	Kinematic	COD_RAP	41.2	12.9	67.4	18.2	5.4	70.5	27.1	15.0	75.4
		05/07/2023 - 22/07/2023	GINAN	Static	COD_FIN	26.7	12.8	56.3	9.0	3.4	11.8	15.0	4.3	19.2
		05/07/2023 - 09/07/2023	GINAN	Static	COD_RAP	20.2	10.6	31.6	9.7	4.4	10.3	4.0	4.7	15.9
		05/07/2023 - 22/07/2023	CSRS	Kinematic	EMR ULT	17.3	14.4	33.6	3.9	4.0	26.6	12.6	13.4	28.1
		05/07/2023 - 22/07/2023	CSRS	Static	EMR_ULT	27	30.6	47.5	6.5	6.6	3.5	7.0	7.1	13.4
F9IB00023	Toowoomba Bypass	01/05/2022 22/07/2022	GINAN	Kinematic	COD_FIN	89.6	27.0	45.2	15.1	6.3	51.5	20.1		52.0
		01/06/2023 - 22/07/2023	CINAN	Ki	_	70.2	25.0	CD D	1.1.1	C A	F2 2	29.1	14.4	53.8
		01/06/2023 - 11/07/2023	GINAN	Kinematic	COD_RAP	78.3	25.8	63.2	14.1	6.4	53.2	27.2	14.9	56.8
		01/06/2023 - 22/07/2023	GINAN	Static	COD_FIN	44.2	19.6	36.7	8.9	4.9	6.8	14.4	5.4	11.2
		01/06/2023 - 11/07/2023	GINAN	Static	COD_RAP	46.2	15.0	37.9	9.8	4.1	7.6	15.2	4.5	12.2
		01/06/2023 – 22/07/2023	CSRS	Kinematic	EMR_ULT	77.8	55.7	72.1	15.5	9.0	45.7	33.9	24.3	59.3
		01/06/2023 – 22/07/2023	CSRS	Static	EMR_ULT	50.7	12.7	45.8	11.6	3.2	4.6	13.2	3.5	13.6
F9IB00027	Mt Bogong	01/06/2023 - 22/07/2023	GINAN	Kinematic	COD_FIN	152.7	128.9	351.7	32.4	25.9	93.4	44.4	38.9	118.2
		01/06/2023 - 11/07/2023	GINAN	Kinematic	COD_RAP	139.8	111.5	272.3	30.0	23.8	95.7	41.5	37.1	122.4
		01/06/2023 – 22/07/2023	GINAN	Static	COD_FIN	220.5	130.7	229.3	34.2	21.4	30.3	41.6	24.3	67.5
		01/06/2023 - 11/07/2023	GINAN	Static	COD_RAP	117.3	71.1	208.7	29.0	16.2	32.4	35.5	20.7	66.4
		01/06/2023 – 22/07/2023	CSRS	Kinematic	EMR_ULT	103.7	193.5	602.8	21.0	27.2	143.5	87.4	130.7	261.7
		01/06/2023 - 22/07/2023	CSRS	Static	EMR ULT	64.1	46.1	142.2	18.7	9.7	19.1	19.6	11.2	41.3
		, ,,			_		-		-		-			-

Fundamental Role of Reference Station

- Enable the accurate positioning of points on the earths surface
- Direct connect to specifical Reference Frames, Nationally and Globally
- The importance of Geospatial Reference Systems was recognised by the United Nations in 2015 adoption of a General Assembly Resolution promoting the importance of an accurate, sustainable and accessible Global Reference Frame to support science and society (Nicholas Brown, 2019)
- Well defined and realised station coordinates (and velocities) underpin science of the Earth's interior, solid Earth, atmosphere, oceans, space environment (John Dawson, 2019)
- The stability of its reference station is crucial to obtain accurate and reliable monitoring results (Guanwen Huang, 2023)

What if the reference station is not stable ?

What if you don't have a reference station?

Conclusions

- 1. Kurloo receiver demonstrates a remarkable PPP precision, achieving 1.5, 1.5, and 4.0 cm in kinematic mode, and 1.0, 1.0, and 1.5 cm in static mode on E, N, and U directions. (Based on the results of F9IA00012)
- 2. GINAN is capable of achieving comparable PPP precision to CSRS, although in certain stations, the results derived from CSRS show better precision.
- **3.** The results obtained from rapid-products and final-products exhibit comparable positioning precision.
- 4. Despite utilizing the same receivers across different stations, their positioning performance varies. The reason need to be investigated.
- 5. Using the combination of GPS and Galileo constellations for GINAN PPP processing can achieve better PPP performance.

Kurloo Technology Pty Ltd Designed and Made in Australia 24 Finchley St, Milton, 4064 Queensland , Australia ABN 85 654 669 342

To request further information or book an appointment:

Email : sales @kurloo.io

Or contact Amy Hooper Sales Manager amy.hooper@kurloo.io