Figure Working Week 2024 Figure 24 May Accra, Ghana Your World, Our World: Resilient Environment of All

Wybrid Networks for Geodetic Data Collection toward Deformation Monitoring

> Arnessa GOODING, Dexter DAVIS & Keith MILLER Department of Geomatics Engineering & Land Management The University of the West Indies St. Augustine Campus TRINIDAD & TOBAGO WI

FIG FIG Working Week 2024 19-24 May Accra, Ghana Your World, Our World: Resilient Environment Accra, Ghana

Introduction

Traditional Passive Geodetic Network

Figure 1 Trinidad Primary Control Network (Surveys & Mapping Division)

Active Geodetic Network - TTAGN

Figure 2 TTAGN (Surveys & Mapping Division)

Your World, Our World: FIG Working Week 2024 Resilient Environment and Sustainable and Sustainable **Resource Management** 19-24 May Accra, Ghana Resou

Introduction

Traditional Passive Geodetic Network

Figure 3 Trinidad Passive Control Network (Surveys & Mapping Division)

- Traditional Triangulation measurement
- Episodic observations 1904, 1930s, 1960s, 1980s/90s
- Static coordinates in a dynamic environment
- Challenges of accuracy for deformation analysis

FIG 19-24 May Vour World, Our World: Accra, Ghana Vour World, Our World: Resilient Environment for All

Introduction

TT Active Geodetic Network

- 8 stations 7 in Trinidad & 1 in Tobago
- 5 TTAGN points
- 3 COCONet points
- Dynamic coordinates
- Challenges of resolution for deformation analysis

Figure 4 Trinidad combined CORS Network

Deformation context

If the area surveyed is actively deforming the quality of the passive control declines with time.

Monitoring surface deformation is integral to sustainable development Modelling deformation caused by geodynamics requires a significant archive of data

FIG Working Week 2024 Vour World, Our World Resilient Environment and Sustainable 19-24 May Accra, Ghana Resou

Your World, Our World: and Sustainable Resource Management

Deformation context

Trinidad & Tobago located in an active fault zone

At least 3 known fault lines

Unknown geodynamics between Trinidad and Tobago

Figure 5 Known Major Faults of Trinidad (U.S. Geological Survey, Central Energy Resources Team 2000)

Background

- For emerging nations, it is not uncommon for CORS to be unreliable
- For temporal and spatial densification of GPS data nationally, static observations on passive points can be used.
- In the absence of portable GNSS receivers, traditional triangulation field methods may be used.
- However, keeping up with regular episodic campaigns for data collection can be a significant challenge

FIG Norking Week 2024 19-24 May Accra, Ghana Your World, Our World: Resilient Environment Accra, Ghana

Geodetic Data Processing

Geodetic data is pre-processed, then post-processed, and then analyzed

- Post-processing platforms exist in three main forms: online platforms, proprietary software from manufacturers and research-grade software
- Regardless of the post-processing method to be used, the geometry of the processing network, and the lengths of the observation periods can significantly impact the positions obtained

FIG Norking Week 2024 19-24 May Vour World, Our World: Resilient Environment Accra, Ghana

Attainable Accuracies – Observation times

Table 1(a) Active vs Passive Point Uncertainties

Station	Type of control	σN (mm)	σE (mm)	σU (mm)	Length of Obs (hours)	
CN57		1.350	1.940	6.310		
TTSF	Active	1.560	2.140	6.970	24	
TTUW		1.320	1.880	5.960		
CATH		9.690	12.320	69.250		
GASP		5.670	6.960	26.300		
FPRT	Passive	6.210	7.800	27.290	4	
MNLA		7.300	8.120	35.190		
LIRO		5.350	6.490	23.040		

Table 1(b) Active Point Uncertainties 1 day vs 10 days

	24 hours			10 days		
Station	σN	σE	σU	σN	σE	σU
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
CN57	1.350	1.940	6.310	0.880	1.120	4.080
TTSF	1.560	2.140	6.970	0.910	1.180	4.120
TTUW	1.320	1.880	5.960	0.840	1.090	3.830

FIG Norking Week 2024 19-24 May Vour World, Our World: Resilient Environment Accra, Ghana

Velocity Modelling

Table 2 Velocities for Active vs Passive Stations

Station	Type of control	σN (mm)	σE (mm)	σU (mm)	Span of Obs (yrs)	# of Epochs
TTSF	Active	0.100	0.110	0.430	16	11
TTUW		0.120	0.130	0.480		
CATH	Passive	2.790	3.400	0	6	4
GASP		1.110	1.340	19.370		
FPRT		1.140	1.400	23.300		
MNLA		1.350	1.480	33.630		
LIRO		1.200	1.420	24.500		

Integration Considerations

Despite the possibility of introducing more errors into the model, combining observational data from different collection methods provides values that would otherwise be unavailable.

- The integration of static episodic GNSS data into a deformation monitoring network with CORS and traditionally collected requires a level of standardization
- Procedures for data collection, the type(s) of data to be collected, storage method to be used, and procedures for the collection and storage of metadata all need to be standardized.

Conclusions

Where traditional surveying methods are still preferred over GNSS surveying, it may not always be easy to obtain positions that are suitable for use in geodetic work When combining GNSS data, it is possible to utilize data from multiple separate observation sessions to derive geodetic quality positions at a given epoch With longer episodic GNSS observation sessions and more regular campaigns, submillimeter accuracies are attainable

The retention of raw data contributes to the sustainability of the infrastructure

FIG Working Week 2024 Resilient Environment and Sustainable 19-24 May Accra, Ghana Resou

Your World, Our World: Resource Management

SUSTAINABLE G ALS International Federation of Surveyors supports the Sustainable Development Goals

Commission #6

Structural Digital Twinning frameworks, applications and technologies in Engineering Surveying Serving Society for the Benefit of People and Planet

References

Blick, G., C. Crook, D. B. Grant, and J. Beavan. 2005. "Implementation of a semi-dynamic datum for New Zealand." International Association of Geodesy Symposia, December: 38-43.

- Erol, S., B. Erol, and T. Ayan. 2004. "A General Review of the Deformation Monitoring Techniques and a Case Study: Analysing Deformations Using GPS/Levelling." January.
- Ghilani, Charles D., and Paul R. Wolf. 2012. Elementary Surveying An Introduction to Geomatics Thirteenth Edition. Boston: Prentice Hall (Pearson).
- Kierulf, H.P., G. Valsson, K. Evers, M. Lidberg, P. Hakli, D. Prizginiene, G.A. Hjelle, et al. 2019. "Towards a Dynamic Reference Frame in Iceland." Geophysica 3-17.

References

Shariff, N. S., J. Gill, Z. M. Amin, and K. M. Omar. 2017. "Towards the implementation of a semidynamic datum for Malaysia." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Kuala Lumpur, Malaysia: ISPRS Archives, October 4. Torge, W., and J. Muller. 2012. Geodesy. 4th Edition. Berlin: Walter de Gruyter.

FIG FIG Working Week 2024 19-24 May Vour World, Our World: Resilient Environment Accra, Ghana

