FIG FIG Vorking Week 2024 FIG 19-24 May Accra, Ghana Your World, Our World: Accra, Ghana Your World, Our World: Resilient Environment Accra, Ghana

Ping Digital Signal Processing (DSP) - Evaluation of Shallow Water Bathymetry and Object Detection Capability. (12404)

Sebastian Botsyo (Ghana) Dr. Timothy Scott (United Kingdom) Dr. Kenneth Kingston (United Kingdom)

Overview

Interferometric Sonars for shallow-water swath surveys. Cost-effective techniques and solutions that impact survey capacity and productivity.

A multi-stave side-scan sonar using the angle of arrival of the seabed returns to collect wide swath of bathymetry and sonar amplitude data.

It employs patented Computed Angle-of-Arrival Transient Imaging (CAATI) with proprietary signal processing methodologies to;

Minimizes multipath

Improves bathymetry data over a swath width at nadir

Detects multiple simultaneous backscatter arrivals

Allows for water column targets

Real time 3DSSTM high-definition imaging technology and MBES Bathymetry Engine.

Study Objectives

Assess bathymetric uncertainty of 3DSS-IDX-450 and Norbit iWBMS sonars

Evaluate object detection capabilities (seabed and mid-water targets)

Compare the performance of the two sonar systems

Survey Location

Cawsand Bay, Cornwall, UK

shallow seabed with a steady slope to death of 10m below chart datum

Suitable for testing sonar systems with structured survey lines for reference surface analysis

has a 0.5m calibrated cube suitable for testing seabed object detection capabilities of acoustic sonars per IHO Standards.

FIG Working Week 2024 Resilient Environment and Sustainable 19-24 May Accra, Ghana Resour

Your World, Our World: and Sustainable **Resource Management**

Sonar Systems - 3DSS-IDX-450

high-resolution swath bathymetry coverage of up to 14 times the depth.

AML MicroX Sound Velocity Sensor, SBG Ellipse2-E IMU and Septentrio dual GNSS.

operates at 450 kHz

Sonar dimensions are 56.8 cm (length) x 9.8 cm (diameter) 10m depth rating, and it weighs 8kg in air

operates with a horizontal beam width (2-way) of 0.4° and vertical beam width (selectable) of $15^{\circ} - 125^{\circ}$ with 1440 soundings per Ping across the swath at a ping rate of 30Hz The integrated MRU have an accuracy of 0.5° for roll and pitch

FIG FIG Working Week 2024 19-24 May Vour World, Our World: Accra, Ghana Vour World, Our World: Accra, Ghana Vour World, Our World: Resilient Environment Accra, Ghana

Sonar Systems - Norbit iWBMS

System Features	Specifications
Operating Frequency	Nominal 400kHz (selectable 200 – 700kHz)
Swath Coverage	0.5º - 210º Flexible selector
Range Resolution	<10mm Acoustic w. 80kHz bandwidth
Number of Beams	256 - 512 (1024 HDS) EA & ED
Ping Rate	Up to 60Hz, Adaptive
Depth Range	0.2-275m (>300m with 0.9°x0.9° option)
Resolution (Across & Along Track)	0.9°x0.9° @400kHz & 0.5°x1.0° @700kHz.
Heading	0.03º (RTK) with 2m antenna separation
Roll and Pitch	0.02º Independent of antenna separation
Heave	2cm or 2% (true heave), 5cm or 5% (real-time)

PLATINUM SPONSORS

FIG Norking Week 2024 19-24 May Accra, Ghana Your World, Our World: Accra, Ghana Your World, Our World: Resilient Environment Accra, Ghana for All

Survey Setup Yellow Pig USV (for 3DSS-IDX-450)

Software Architecture

Host Computer:

Optional Additional Clients:

Survey Setup Falcon Spirit (vessel for Norbit iWBMS)

Data Collection - Bathymetric Uncertainty Test

A patch test was performed to detect multibeam transducer mounting angle errors relating to the MRU (and thus the vessel)

Reference surface survey with grid lines perpendicular to shore and shore-parallel lines for crosschecking

Data for the bathymetric uncertainty tests was collected using a 'star pattern' across this highresolution reference area to minimize the impact of wave motion on the dataset.

FIG Working Week 2024 Resilient Environment and Sustainable 19-24 May Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Data Collection - Object Detection Survey

Object detection survey was planned around a pre-calibrated 0.5m cubic seabed target and a circular midwater object (0.65m in circumference) placed within a 15m radius of the cube

This is to test the ability of both sonars to detect the object at the nadir (0°-20°), 10m (mid-swath 30°-60°) and 20m (outer swath 70°-80°) away from the object.

Strimble Strimble

Data Processing

Data structuring and cleaning

Reference surface and cross-line analysis for bathymetric uncertainty

Object detection analysis (3D Editor, profile tool

Results - Bathymetric uncertainty comparison (IHO Order compliance)

Results - Bathymetric uncertainty comparison (Cross Check Statistics)

IHO Order 1 Statistics			IHO Special Order Statistics				
Norbit iWBMS 3DSS-IDX-450		Norbit IW	BMS	3DSS-IDX-450			
Statistic Value		Statistic	Value	Statistic	Value	Statistic	Value
Order 1 Error Limit	0.504947	Order 1 Error Limit	0.504903	Special Order Error Limit	0.253288	Special Order Error Limit	0.253259
Order 1 # Rejected	179	Order 1 # Rejected	108466	Special Order # Rejected	2704	Special Order # Rejected	949034
Order 1 P-Statistic	7.31914e-05	Order 1 P-Statistic	0.0180014	Special Order P-Statistic	0.00110564	Special Order P-Statistic	0.157505
Order 1 Test	ACCEPTED	Order 1 Test	ACCEPTED	Special Order Test	ACCEPTED	Special Order Test	REJECTED
Number Of Points	2445643	Number Of Points	6025422	Number Of Points	2445643	Number Of Points	6025422
Grid Cell Size	0.250	Grid Cell Size	0.500	Grid Cell Size	0.250	Grid Cell Size	0.500
Difference Mean	0.011	Difference Mean	0.119	Difference Mean	0.011	Difference Mean	0.119
Difference Median	0.010	Difference Median	0.080	Difference Median	0.010	Difference Median	0.080
Difference Std. Dev	0.034	Difference Std. Dev	0.139	Difference Std. Dev	0.034	Difference Std. Dev	0.139
Difference Range	[-1.159, 1.180]	Difference Range	[-2.038, 1.994]	Difference Range	[-1.159, 1.180]	Difference Range	[-2.038, 1.994]
Mean + 2*Stddev	0.078	Mean + 2*Stddev	0.397	Mean + 2*Stddev	0.078	Mean + 2*Stddev	0.397
Median + 2*Stddev	0.077	Median + 2*Stddev	0.358	Median + 2*Stddev	0.077	Median + 2*Stddev	0.358
Data Mean	-5.413	Data Mean	-5.280	Data Mean	-5.413	Data Mean	-5.280
Reference Mean	-5.424	Reference Mean	-5.400	Reference Mean	-5.424	Reference Mean	-5.400
Data Z-Range	[-7.406, -3.389]	Data Z-Range	[-8.472, -3.043]	Data Z-Range	[-7.406, -3.389]	Data Z-Range	[-8.472, -3.043]
Reference Z-Range	[-7.433, -3.637]	Reference Z-Range	[-6.768, -3.606]	Reference Z-Range	[-7.433, -3.637]	Reference Z-Range	[-6.768, -3.606]

PLATINUM SPONSO

Results - Object Detection (Bathymetric Repeatability)

NORBIT	Nadir (0m - Over Target)		10m offsets			20m offsets			
Elements	E	N	Z	E	N	Z	E	N	Z
Average	415702.162	5576939.741	-5.218	415702.098	5576939.641	-5.211	415702.096	5576939.583	-5.221
StdDev	0.276	0.357	0.095	0.224	0.390	0.079	0.276	0.293	0.121
Minimum	415701.648	5576939.202	-5.543	415701.611	5576939.04	-5.517	415701.504	5576939.012	-5.499
Maximum	415702.92	5576940.442	-5.047	415702.704	5576940.488	-4.989	415702.887	5576940.229	-4.969
Total Hits		178			291			130	

3DSS-IDX-450	Nadir (0m - Over Target) - 3D			10m offsets - 3D			20r	n offsets - 3D)
Elements	E	N	Z	E	N	Z			
Average	415702.417	5576939.701	-5.0998	415702.164	5576940.128	-5.412	No hits		
StdDev	0.348	0.320	0.089	0.240	0.368	0.171			
Minimum	415701.536	5576938.921	-5.594	415701.725	5576939.08	-5.641			
Maximum	415702.346	5576940.592	-4.905	415702.769	5576940.477	-5.006			
Total Hits		83			861				
3DSS-IDX-450	Nadir (0m	- Over Target	t) - MB	10m offsets - MB			20m offsets - MB		
Elements	E	N	Z	E	N	Z	E	N	Z
Average	415702.385	5576939.812	-5.214	415702.163	5576939.947	-5.391	415702.054	5576939.991	-5.390
StdDev	0.381	0.322	0.064	0.287	0.362	0.145	0.264	0.299	0.151
Minimum	415701.631	5576939.253	-5.34	415701.5	5576939.164	-5.677	415701.502	5576939.5	-5.594
Maximum	415702.581	5576940.42	-5.083	415702.45	5576940.102	-5.103	415702.543	5576940.738	-5.072
	1								

Components	Em	Nm
Known Coord. (A)	415702.000	5576940
Norbit 0m (B)	415702.162	5576939.741
Norbit 10m (C)	415702.098	5576939.641
Norbit 20m (D)	415702.096	5576939.583
3DSS 0m -3D (E)	415702.417	5576939.701
3DSS 10m -3D (F)	415702.164	5576940.128
3DSS 0m -MB (G)	415702.385	5576939.812
3DSS 10m -MB (H)	415702.163	5576939.947
3DSS 20m -MB (I)	415702.054	5576939.991
	ΔEm	ΔNm
Norbit Om (A-B)	-0.162	0.260
Norbit 10m (A-C)	-0.098	0.359
Norbit 20m (A-D)	-0.096	0.417
3DSS 0m -3D (A-E)	-0.417	0.299
3DSS 10m -3D (A-F)	-0.164	-0.128
3DSS 0m -MB (A-G)	-0.385	0.188
3DSS 10m -MB (A-H)	-0.163	0.053
3DSS 20m -MB (A-I)	-0.054	0.009

PLATINUM SPONSOR

Results - Object Detection (Bathymetric Repeatability)

Sonar	E (95% CL)	N (95% CL)
Norbit iWBMS	0.029 m	0.062 m
3DSS-IDX-450 3D	0.120 m	0.203 m
3DSS-IDX-450 MB	0.103 m	0.072 m

FIG Working Week 2024 Resilient Environment and Sustainable FIG 19-24 May Accra, Ghana Resou

Your World, Our World: **Resource Management**

Object Detection (Mid-water Target) 2D & 3D

FIG Norking Week 2024 19-24 May Vour World, Our World Accra, Ghana Your World, Our World Resilient Environment Accra, Ghana for All

Conclusion – Bathymetry

The Ping DSP's 3DSS- IDX-450 Sonar produces bathymetric soundings comparable to an ideal multibeam sonar without sidelobes, beam spreading, or asymmetrical beam sensitivity inherent in traditional beam steering systems.

3DSS- IDX-450 Sonar has demonstrated its ability to meet the TVU and THU standards of IHO Order 1 and Special Order (within 20°-140° swath).

Delivers high-sounding densities and 3D imagery together with bathymetric data.

The patented CAATI and 3DSS MBES engine have been seen to overcome many of the limitations inherent in traditional interferometric systems, achieving an overall depth uncertainty of 0.110m (95% c.l.) compared to Norbit iWBMS with 0.042m on a shallow seabed.

FIG Vor World, Our World: 19-24 May Vour World, Our World: Accra, Ghana Vour World, Our World: Accra, Ghana Resilient Environment Accra, Ghana

Conclusion – Object Detection

The 3DSS-IDX-450 Sonar was highly efficient (100%) in distinguishing the midwater target, including the mooring cable and the anchor, which is one of its primary capabilities.

During this testing, the 3D side scan sonar could effectively detect seabed targets in shallow water (2–6.5m depth below CD).

The CAATI design provided low shadow signal levels in areas with multipath existence for the MBES data, allowing the seabed target to be identified.

Seabed objects within the study area were identifiable and distinguishable based on their highlights.

Thank you

FIG Working Week 2024 Resilient Environment and Sustainable 19-24 May Accra, Ghana Resou

Your World, Our World: Resource Management

SUSTAINABLE GONALS International Federation of Surveyors supports the Sustainable Development Goals

Commission 4

Hydrography

Serving Society for the Benefit of People and Planet

